Measurement of the low-energy antitriton inelastic cross section

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 848 (2024) 138337, 2024.
Inspire Record 2675130 DOI 10.17182/hepdata.145643

In this Letter, the first measurement of the inelastic cross section for antitriton$-$nucleus interactions is reported, covering the momentum range of $0.8 \leq p < 2.4$ GeV/$c$. The measurement is carried out using data recorded with the ALICE detector in pp and Pb$-$Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to $A=3$ carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter.

10 data tables match query

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in exp. data.

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 0.75).

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 1.0).

More…

Total p-p and 'p-n' Cross Sections at Cosmotron Energies

Chen, Francis F. ; Leavitt, Christopher P. ; Shapiro, Anatole M. ;
Phys.Rev. 103 (1956) 211-225, 1956.
Inspire Record 46809 DOI 10.17182/hepdata.828

The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.

4 data tables match query

No description provided.

No description provided.

More…

Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 117 (2016) 182002, 2016.
Inspire Record 1468167 DOI 10.17182/hepdata.74822

This Letter presents a measurement of the inelastic proton-proton cross section using 60 $\mu$b$^{-1}$ of $pp$ collisions at a center-of-mass energy $\sqrt{s}$ of $13$ TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ($2.07<|\eta|<3.86$) of the detector. A cross section of $68.1\pm 1.4$ mb is measured in the fiducial region $\xi=M_X^2/s>10^{-6}$, where $M_X$ is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this $\xi$ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with $M_X>13$ GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross-section of $78.1 \pm 2.9$ mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

1 data table match query

The measured and extrapolated inelastic cross section. The statistical uncertainty is negligible and is therefore displayed as zero. The first systematic uncertainty is the experimental systematic uncertainty apart from the luminosity, the second is the luminosity uncertainty, and the third is the extrapolation uncertainty.


First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

17 data tables match query

Raw primary antihelium3-to-helium3 ratio as a function of the momentum p_primary.

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with default sigma_inel(3Hebar).

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with sigma_inel(3Hebar)x0.5.

More…

Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

42 data tables match query

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…

Correlations Between Neutral and Charged Pions Produced in 300-{GeV}/$c p p$ Collisions

Kafka, T. ; LoPinto, F. ; Brody, A. ; et al.
Phys.Rev.D 19 (1979) 76, 1979.
Inspire Record 6901 DOI 10.17182/hepdata.24255

Neutral-pion production in pp interactions has been studied using 8000 photon conversions in the Fermilab 15-ft bubble chamber. Inclusive π0 multiplicity moments and ππ correlation integrals are presented; f200 is determined to be + 3.0±0.8. For the semi-inclusive π0 multiplicity distributions we find 〈n(π0)〉n− to increase with n−, while the dispersions are n− independent. Results on f2−0, f200, and f2,n−00 are compared to predictions of simple cluster models.

3 data tables match query

No description provided.

No description provided.

No description provided.


Version 2
Measurement of the Bottom contribution to non-photonic electron production in $p+p$ collisions at $\sqrt{s} $=200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 202301, 2010.
Inspire Record 860571 DOI 10.17182/hepdata.101352

The contribution of $B$ meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in $p+p$ collisions at $\sqrt{s} =$ 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted $B$ decay contribution is approximately 50% at a transverse momentum of $p_{T} \geq 5$ GeV/$c$. These measurements constrain the nuclear modification factor for electrons from $B$ and $D$ meson decays. The result indicates that $B$ meson production in heavy ion collisions is also suppressed at high $p_{T}$.

3 data tables match query

Distributions of the azimuthal angle between nonphotonic electrons and charged hadrons normalized per nonphotonic electron trigger. The trigger electron has (top) $2.5 < p_{T} < 3.5$ GeV/$c$ and (bottom) $5.5 < p_{T} < 6.5$ GeV/$c$. The curves represent PYTHIA calculations for $D$ (dotted curve) and $B$ (dashed curve) decays. The fit result is shown as the black solid curve.

(a) Background-subtracted invariant mass distribution of $K$ pairs requiring at least one nonphotonic electron trigger in the event. The solid line is a Gaussian fit to the data near the peak region. (b) Distribution of the azimuthal angle between nonphotonic electron (positron) trigger particles and $D^{0}$ ($\bar{D}^{0}$). The solid (dashed) line is a fit of the correlation function from PYTHIA (MC$@$NLO) simulations to the data points.

Transverse momentum dependence of the relative contribution from $B$ mesons ($r_{B}$) to the nonphotonic electron yields. Error bars are statistical and brackets are systematic uncertainties. The solid curve is the FONLL calculation [14]. Theoretical uncertainties are indicated by the dashed curves.


Topological, Total and Elastic Cross-sections for $K^+ p$, $\pi^+ p$ and $p p$ Interactions at 147-{GeV}/$c$

Brick, D. ; Rudnicka, H. ; Shapiro, A.M. ; et al.
Phys.Rev.D 25 (1982) 2794, 1982.
Inspire Record 11840 DOI 10.17182/hepdata.4111

The Fermilab hybrid 30-in. bubble-chamber spectrometer was exposed to a tagged 147-GeV/c positive beam containing π+, K+, and p. A sample of 3003 K+p, 19410 pp, and 20745 π+p interactions is used to derive σn, 〈n〉, f2cc, and 〈nc〉D for each beam particle. These values are compared to values obtained at other, mostly lower, beam momenta. The overall dependence of 〈n〉 on Ea, the available center-of-mass energy, for these three reactions as well as π−p and pp interactions has been determined.

13 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2018) 100, 2018.
Inspire Record 1665223 DOI 10.17182/hepdata.89782

The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13\,TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$\,GeV/$c$ in the pseudorapidity range $2<\eta<5$ is determined to be $\sigma_{\rm acc}= 62.2 \pm 0.2 \pm 2.5$\,mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\sigma_{\rm inel}= 75.4 \pm 3.0 \pm 4.5$\,mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7\,TeV is also reported.

3 data tables match query

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p > 2.0$ GeV/$c$ and $2.0 < \eta < 5.0$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is found negligible. A particle is long-lived if its proper (mean) lifetime is larger than 30 ps, and it is prompt if it is produced directly in the $pp$ interaction or if none of its ancestors is long-lived.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, extrapolated from Monte Carlo in similar way to measurement at $\sqrt{s}=7$ TeV.

Update of the total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV due to improved calibration of the luminosity scale.


Measurement of proton-proton elastic scattering and total cross-section at S**(1/2) = 7-TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 101 (2013) 21002, 2013.
Inspire Record 1220862 DOI 10.17182/hepdata.66456

At the LHC energy of $\sqrt s = 7\,{\mathrm { TeV}}$ , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σ(beam)) in a dedicated run with β* = 90 m, |t|-values down to 5·10(−)(3) GeV(2) were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV(−)(2) over the large |t|-range from 0.005 to 0.2 GeV(2) describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).

4 data tables match query

The measured differential elastic cross section.

The fitted slope parameter for the elastic cross section fitted over 4 |T| ranges.

The fitted elastic cross section parameters. The quoted systematic (sys) errors are from the uncertainties in the T dependence, normalization and luminosity, respectively.:.

More…