The exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

The COMPASS collaboration Alexeev, M.G. ; Alexeev, G.D. ; Amoroso, A. ; et al.
Phys.Rev.D 105 (2022) 012005, 2022.
Inspire Record 1898933 DOI 10.17182/hepdata.114098

We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.

4 data tables match query

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

More…

Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 &lt; m_{3\pi} &lt; 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 &lt; t' &lt; 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables match query

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


Comprehensive evidence about a narrow p anti-p state of mass 2.02-GeV/c**2.

Ferrer, A. ; Grigorian, A.A. ; Perepelitsa, V.F. ; et al.
Eur.Phys.J.C 10 (1999) 249-263, 1999.
Inspire Record 471000 DOI 10.17182/hepdata.49489

We review earlier results, and add new evidence, on the existence of a narrow ${\mathrm{p}}\overline{\mathrm{p}}$ state at a mass of 2.02 GeV $/c^

2 data tables match query

Cross section times branching ratio. Statistical errors only.

Cross section times branching ratio. Statistical errors only.


First observation of strong OZI rule violation in pi N interactions.

Ferrer, A. ; Grigorian, A.A. ; Perepelitsa, V.F. ; et al.
Phys.Lett.B 394 (1997) 395-402, 1997.
Inspire Record 426798 DOI 10.17182/hepdata.47710

The data of the CERN WA56 experiment that triggered the fast proton produced in the π + p and π − p interactions at beam momenta 20 GeV/c and 12 GeV/c, respectively, are used to analyse the final states pfΦ ( ω ) π ± . A large excess (up to two orders of magnitude) of the Φ ω cross sections ratio over the OZI prediction is observed.

10 data tables match query

No description provided.

No description provided.

No description provided.

More…

Study of quark line selection rule (OZI rule) in hadron processes. 1. Charge exchange OZI suppressed reaction pi- + p ---> phi + n at P(pi-) = 32-GeV/c

Viktorov, V.A. ; Golovkin, S.V. ; Dorofeev, V.A. ; et al.
Phys.Atom.Nucl. 59 (1996) 1175-1183, 1996.
Inspire Record 405705 DOI 10.17182/hepdata.40543

None

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////RES-DEF(RES=PHI,BACK=CORRECTED)//DECAY-BR(BRN=PHI --> K+ K-,BR=0.49 +- 0.01)).


Study of the reaction pi- p ---> eta-prime eta-prime n

Berdnikov, E.B. ; Bityukov, S.I. ; Borisov, G.V. ; et al.
Z.Phys.C 57 (1993) 13-16, 1993.
Inspire Record 340793 DOI 10.17182/hepdata.14498

The reaction π−p→η′η′n has been studied atpπ=37 GeV/c. Total of 14 events of this reaction have been selected. It has been shown that in the effective mass spectrum of the η′η′ system the events are concentrated mainly near the reaction threshold, which might be caused by the decayX(1910)→η′η′. The reaction cross-section has been evaluated: σ(π−p→η′η′n)=110±40 nb.

2 data tables match query

No description provided.

No description provided.


Evidence for a 1-+ Exotic Meson

The IHEP-Brussels-Los Alamos-Annecy(LAPP) collaboration Alde, D. ; Binon, F.G. ; Boutemeur, M. ; et al.
Phys.Lett.B 205 (1988) 397, 1988.
Inspire Record 260839 DOI 10.17182/hepdata.29972

A non q q ,J PC = 1 −+ , I G =1 − meson has been observed in the study of the exclusive reaction π − p→π 0 ηn at 100 GeV. Its mass is (1406±20) MeV. Its width is (180±30) MeV.

1 data table match query

No description provided.


Production of $G(1590)$ in 300-{GeV} Central $\pi^- N$ Collisions

The Serpukhov-Brussels-Los Alamos-Annecy(LAPP)-Pisa collaboration Alde, D. ; Bellazzini, R. ; Binon, F.G. ; et al.
Phys.Lett.B 201 (1988) 160, 1988.
Inspire Record 250393 DOI 10.17182/hepdata.6493

Significant production of G(1590), a scalar glueball candidate, is observed in a study of η pairs produced in π−N central collisions at 300 GeV/ c .

2 data tables match query

No description provided.

No description provided.


NEUTRAL MESONS WHICH DECAY INTO 4 pi0

The Serpukhov-Brussels-Los Alamos-Annecy(LAPP) collaboration Alde, D. ; Binon, F.G. ; Bricman, C. ; et al.
Phys.Lett.B 198 (1987) 286-291, 1987.
Inspire Record 250768 DOI 10.17182/hepdata.30106

Data on the 4π 0 decay mode of mesons have been obtained in a search for glueballs performed at the CERN SPS with the GAMS-4000 multiphoton spectrometer. A new tensor glueball candidate X(1810) appears as a clear peak in the 4π 0 mass spectrum. The 4π 0 decay of G(1590) is also observed. The measured value of BR(G→4 π 0 )/BR(G→ ηη )=0.8±0.3 further supports the glueball assignment of this scalar particle. The rate decay of f(1270) into 4π 0 has been measured: BR(f→4 π 0 ) = (3±1)×10 −3 .

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Study of Light Meson Radiative Decays

Bityukov, S.I. ; Borisov, G.V. ; Viktorov, V.A. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 800, 1988.
Inspire Record 253771 DOI 10.17182/hepdata.40758

None

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Experiment on Search for Tachyons Production in pi- p Interactions at 4.5 GeV/c

Perepelitsa, V.F. ;
ITEP-87-161, 1987.
Inspire Record 1394614 DOI 10.17182/hepdata.40098

The results of the experiment to search for charged tachyon production by Π- mesons with the 4.5 GeV/c momenta in a liquid-hydrogen bubble chamber are presented. Analysis of the events chosen is carried out by the method of missing masses. A definite excess of events-candidates, which is difficultly explained by all known backgrounds, is observed. Nevetherless, as interpretation of these events is indefinite, the results obtained are considered as establishment of the upper limits to charged tachyon production cross sections. These limits are on the ∼10-4 level from the total cross section of Π-p interactions, that is considerably lower than the upper limits established up to now to probabilities of tachyon production in hadron reactions

1 data table match query

No description provided.


2.22-{GeV} $\eta \eta^\prime$ Structure Observed in 38-{GeV}/$c$ and 100-{GeV}/$c \pi^- p$ Collisions

The Serpukhov-Brussels-Los Alamos-Annecy(LAPP) collaboration Alde, D. ; Binon, F. ; Bricman, C. ; et al.
Phys.Lett.B 177 (1986) 120, 1986.
Inspire Record 230300 DOI 10.17182/hepdata.40940

A structure has been observed at 2220 MeV in the mass spectrum of ηη ′ systems produced by 38GeV/ c and 100 GeV/ c ′ negative pions on protons. The angular distribution of the decay products shows that this structure is presumably a spin J ⩾ 2 meson.

2 data tables match query

No description provided.

No description provided.


Study of a Possible Exotic $\phi \pi^0$ State With a Mass of About 1.5-{GeV}/$c^2$

Bityukov, S.I. ; Dzhelyadin, R.I. ; Dorofeev, V.A. ; et al.
Phys.Lett.B 188 (1987) 383, 1987.
Inspire Record 233160 DOI 10.17182/hepdata.10556

New data have been obtained on a resonance in the ϕπ 0 system, the C meson, which is formed in the π − p → ϕπ 0 n charge-exchange reaction. The experiment has been performed at the Serpukhov 70 GeV accelerator. The mass and the width of the resonance are measured to be M =1480±40 MeV , Γ =130±60 MeV . The production cross section is determined at a π − momentum of 32.5 GeV / c : σ ( π − p → Cn )· BR ( C → ϕπ 0 )=40±15 nb . The C(1480) meson has an isospin I =1 and spin-parity J PC =1 − − . It is strongly coupled to the ϕπ 0 channel and is considered as a possible exotic meson.

3 data tables match query

No description provided.

No description provided.

THE ACCEPTANCE CORRECTED DISTRIBUTION.


Possible Exotic $\phi \pi^0$ State With a Mass of About 1.5-{GeV}

Bityukov, S.I. ; Viktorov, V.A. ; Vishnevsky, N.K. ; et al.
JETP Lett. 42 (1985) 384-387, 1985.
Inspire Record 229516 DOI 10.17182/hepdata.16883

None

1 data table match query

No description provided.


Production of $G(1590)$ and Other Mesons Decaying Into $\eta$ Pairs by 100-{GeV}/$c \pi^-$ on Protons

Alde, D. ; Binon, F.G. ; Bricman, C. ; et al.
Yad.Fiz. 44 (1986) 120-136, 1986.
Inspire Record 222928 DOI 10.17182/hepdata.10313

None

3 data tables match query

No description provided.

No description provided.

No description provided.


STUDY OF D (1285) ---> K+ K- pi0 DECAY

Bityukov, S.I. ; Dorofeev, V.A. ; Dzhelyadin, R.I. ; et al.
JETP Lett. 39 (1984) 115, 1984.
Inspire Record 195747 DOI 10.17182/hepdata.41100

Results on the study of D(1285)→K + K − π 0 -decay are presented. The K + K − effective mass spectrum is measured with statistics which are by an order of magnitude higher than in the previous data. From the analysis of the differential spectrum d N d M KK (in the framework of the δ-dominance model) the δ-meson effective width is Γ δ >180MeV/ c 2 at √ s =1 GeV/ c 2 , which means a strong coupling of the δ-meson with hadrons.

2 data tables match query

No description provided.

No description provided.


EXCLUSIVE REACTIONS IN pi+ p INTERACTIONS AT 32-GeV/c

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Sov.J.Nucl.Phys. 34 (1981) 821, 1981.
Inspire Record 165497 DOI 10.17182/hepdata.41255

None

19 data tables match query

No description provided.

No description provided.

No description provided.

More…

Inclusive Slow Proton and $\Delta^{++}$ (1236) Resonance Production in $\pi^+ p$ Interactions at 32-{GeV}/$c$

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Chliapnikov, P.V. ; et al.
Sov.J.Nucl.Phys. 31 (1980) 494, 1980.
Inspire Record 144016 DOI 10.17182/hepdata.18016

None

15 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering and Charged Particle Multiplicity in 32-{GeV}/$c \pi^+ p$ Interactions

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Bryzgalov, V.V. ; et al.
Sov.J.Nucl.Phys. 31 (1980) 337, 1980.
Inspire Record 144012 DOI 10.17182/hepdata.18936

None

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Inclusive Production of Pions and $\rho^0$ in $\pi^+ p$ Interactions at 32-{GeV}/$c$

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Chliapnikov, P.V. ; et al.
Sov.J.Nucl.Phys. 31 (1980) 628, 1980.
Inspire Record 143792 DOI 10.17182/hepdata.2720

None

19 data tables match query

No description provided.

No description provided.

No description provided.

More…

Inclusive Strange Particle Production in $\pi^+ p$ Interactions at 32-{GeV}/$c$

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Nucl.Phys.B 165 (1980) 1-18, 1980.
Inspire Record 141734 DOI 10.17182/hepdata.8000

The production of K s 0 , Λ and Λ is measured in π + p interactions at 32 GeV/ c . The total inclusive cross sections are found to be 2.07±0.14, 1.00±0.10 and 0.14±0.04 mb, respectively. The energy dependence of total inclusive cross sections and inclusive distributions is discussed and a comparison is made with p, p , K + and K − induced reactions. We find that the factorization hypothesis is satisfied for the inclusive reactions π + p→ Λ X and K + p→ Λ X. Multi-strange-particle production is similar in π + p and K + p interactions at 32 GeV/ c . There is evidence for beam fragmentation in Λ production. The hierarchy of Λ inclusive cross sections in p , K + , π + and K − induced reactions at 32 GeV/ c is qualitatively explained by a quark recombination model. The cross sections for inclusive K ∗ + (892) and Σ + (1385) production in 32 GeV/ c π + p interactions are 1.07±0.57 mb and 0.19±0.08 mb, respectively.

12 data tables match query

No description provided.

No description provided.

No description provided.

More…

Analysis of the Reaction pi+ p --> p pi+ pi+ pi- at the Momentum of 3.1-GeV/c

Beketov, G.V. ; Ergakov, V.A. ; Zombkovsky, S.M. ; et al.
Yad.Fiz. 28 (1978) 1266-1274, 1978.
Inspire Record 136688 DOI 10.17182/hepdata.18986

None

1 data table match query

FROM MAXIMUM LIKELIHOOD FIT TO PARAMETRIZATION OF RESONANCE PRODUCTION CHANNELS.


Study of 4pi system in the rho-prime(1710) meson mass region in the reaction pi- p ---> p pi+ pi- pi- pi0 at 4.5 gev/c momentum.

Kliger, G.K. ; Beketov, G.V. ; Grechko, V.E. ; et al.
Yad.Fiz. 19 (1974) 839-848, 1974.
Inspire Record 95146 DOI 10.17182/hepdata.19145

None

2 data tables match query

No description provided.

ALLOWING FOR 65 PCT BACKGROUND.


On helicity conservation in the reaction pi- p ---> a1 p at 4.45 gev/c

Beketov, G.V. ; Zombkovsky, S.M. ; Kaidalov, A.B. ; et al.
Nucl.Phys.B 59 (1973) 265-272, 1973.
Inspire Record 83967 DOI 10.17182/hepdata.32538

Helicity conservation in the reaction π − p → pA 1 at 4.45 GeV/ c has been studied using 50 cm and 55 cm liquid hydrogen bubble chambers. In the Jackson and the helicity frames the dependence of the ϱ matrix elements on the four-momentum transfer squared to the proton ( t ) for A 1 maximum decay has been calculated. The obtained data are in a good agreement with t -channel helicity conservation. The t -channel dependence of the ϱ matrix elements in the mentioned frames is in good agreement with that calculated using the Regge π-pole exchange model (it is suggested that the A 1 maximum nature is explained by a kinematical effect of the Deck type).

1 data table match query

No description provided.