Nucleon-Nucleon Total Cross Sections from 1.1 to 8 GeV/c

Bugg, D.V. ; Salter, D.C. ; Stafford, G.H. ; et al.
Phys.Rev. 146 (1966) 980-992, 1966.
Inspire Record 50610 DOI 10.17182/hepdata.408

Measurements have been made of the total cross sections σ(p−p) and σ(p−d) over the laboratory momentum range 1.1 to 8 GeV/c, with relative errors of 0.1%. The absolute accuracies of these cross sections are limited to 0.3% by lack of information which will allow the Coulomb-nuclear interference to be calculated accurately. Values of the total cross sections σ(p−n) and σ(I=0) are deduced by assuming the Glauber correction. Structure is observed in σ(p−p) near a mass value of 2.75 GeV/c2; its interpretation is discussed. σ(I=0) rises rapidly in the range 2.3 to 2.9 GeV/c2, and this is attributed to the onset of strong inelastic scattering.

2 data tables match query

No description provided.

No description provided.


Pion-Nucleon Total Cross Sections from 0.5 to 2.65 GeV/c

Carter, A.A. ; Riley, K.F. ; Tapper, R.J. ; et al.
Phys.Rev. 168 (1968) 1457-1465, 1968.
Inspire Record 54182 DOI 10.17182/hepdata.250

Total cross sections of π+ and π− mesons on protons and deuterons have been measured in a transmission experiment to relative accuracies of ±0.2% over the laboratory momentum range 0.46-2.67 GeV/c. The systematic error is estimated to be about ±0.5% over most of the range, increasing to about ±2% near both ends. Data have been obtained at momentum intervals of 25-50 MeV/c with a momentum resolution of ±0.6%. No new structure is observed in the π±p total cross sections, but results differ in several details from previous experiments. From 1-2 GeV/c, where systematic erros are the smallest, the total cross section of π− mesons on deuterons is found to be consistently higher than that of π+ mesons by (1.3±0.3)%; about half of this difference may be understood in terms of Coulomb-barrier effects. The πd and πN total cross sections are used to check the validity of the Glauber theory. Substantial disagreements (up to 2 mb) are observed, and the conclusion is drawn that the Glauber theory is inadequate in this momentum range.

2 data tables match query

No description provided.

No description provided.


Kaon-Nucleon Total Cross Sections from 0.6 to 2.65 GeV/c

Bugg, D.V. ; Gilmore, R.S. ; Knight, K.M. ; et al.
Phys.Rev. 168 (1968) 1466-1475, 1968.
Inspire Record 54183 DOI 10.17182/hepdata.26512

Total cross sections of K+ and K− mesons on protons and deuterons have been measured in a transmission experiment over the range of laboratory momentum 0.6-2.65 GeV/c. Measurements have been made on K− at 58 momenta at intervals of 25-50 MeV/c; the experimental accuracy is better than 1% above 700 MeV/c, and the momentum resolution of the beam is ±0.6%. Structure is observed in the total cross sections suggesting or confirming Y1∗ resonances at masses of 1665, 1768, 1905, 2020, 2250, and 2455 MeV/c2 and Y0∗ resonances at masses of 1695, 1819, 1870, 2100, and 2340 MeV/c2. The K+ measurements are less extensive, and are concentrated in the momentum range below 1.5 GeV/c; the experimental errors are typically ±0.2 mb. Structure previously reported in the K+p and K+d total cross sections near a laboratory momentum of 1.2 GeV/c is confirmed. Total cross sections of K+ and K− on carbon have been measured at a number of momenta with an accuracy of about ±2%.

0 data tables match query

Nuclear modification factors for hadrons at forward and backward rapidities in deuteron gold collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082302, 2005.
Inspire Record 665543 DOI 10.17182/hepdata.141362

We report on charged hadron production in deuteron-gold reactions at sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 < eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 < eta < -1.4, referred to as backward rapidity, and a transverse momentum range p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold collision centrality classes. We observe a suppression relative to binary collision scaling at forward rapidity, sensitive to low momentum fraction (x) partons in the gold nucleus, and an enhancement at backward rapidity, sensitive to high momentum fraction partons in the gold nucleus.

4 data tables match query

$R_{cp}$ as a function of $p_T$ for Punch-Through Hadrons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

$R_{cp}$ as a function of $p_T$ for Hadron Decay Muons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

$R_{cp}$ as a function of $\eta$ for 1.5 < $p_T$ < 4.0 GeV/$c$ for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

More…

High p_T Direct Photon and pi^0 Triggered Azimuthal Jet Correlations in sqrt(s)=200 GeV p+p Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 82 (2010) 072001, 2010.
Inspire Record 857187 DOI 10.17182/hepdata.95866

Correlations of charged hadrons of 1 < pT < 10 GeV/c with high pT direct photons and pi^ 0 mesons in the range 5 <pT < 15 GeV/c are used to study jet fragmentation in the photon+jet and di-jet channels, respectively. The magnitude of the partonic transverse momentum, kT, is obtained by comparing to a model incorporating a Gaussian kT smearing. The sensitivity of the associated charged hadron spectra to the underlying fragmentation function is tested and the data are compared to calculations using recent global fit results. The shape of the direct photon-associated hadron spectrum as well as its charge asymmetry are found to be consistent with a sample dominated by quark-gluon Compton scattering. No significant evidence of fragmentation photon correlated production is observed within experimental uncertainties.

10 data tables match query

Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.

Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.

Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.

More…

Initial Measurements of Z Boson Resonance Parameters in e+ e- Annihilation

Abrams, G.S. ; Adolphsen, Chris ; Aleksan, R. ; et al.
Phys.Rev.Lett. 63 (1989) 724, 1989.
Inspire Record 280007 DOI 10.17182/hepdata.20034

We have measured the mass of the Z boson to be 91.11±0.23 GeV/c2, and its width to be 1.61−0.43+0.60 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.62±0.23 GeV, corresponding to 3.8±1.4 neutrino species.

0 data tables match query

Elliptic flow for $\phi$ mesons and (anti)deuterons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 99 (2007) 052301, 2007.
Inspire Record 746499 DOI 10.17182/hepdata.141340

Differential elliptic flow (v_2) for phi mesons and (anti)deuterons (d^bar)d is measured for Au+Au collisions at sqrt(s_NN) = 200 GeV. The v_2 for phi mesons follows the trend of lighter pi^+/- and K^+/- mesons, suggesting that ordinary hadrons interacting with standard hadronic cross sections are not the primary driver for elliptic flow development. The v_2 values for (d^bar)d suggest that elliptic flow is additive for composite particles. This further validation of the universal scaling of v_2 per constituent quark for baryons and mesons suggests that partonic collectivity dominates the transverse expansion dynamics.

21 data tables match query

$m_{inv}$ distributions for foreground and background $K^+ K^-$ pairs for 20-60% central Au+Au collisions.

$m_{inv}$ distributions

$<cos(2(\varphi^{pair}-\Phi_2))>$ vs. $m_{inv}$.

More…

Measurement of two-particle correlations with respect to second- and third-order event planes in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 99 (2019) 054903, 2019.
Inspire Record 1658594 DOI 10.17182/hepdata.115992

We present measurements of azimuthal correlations of charged hadron pairs in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions after subtracting an underlying event using a model that includes higher-order azimuthal anisotropy $v_2$, $v_3$, and $v_4$. After subtraction, the away-side ($\Delta\phi\sim\pi)$ of the highest transverse-momentum trigger ($p_T>4$ GeV/$c$) correlations is suppressed compared to that of correlations measured in $p$$+$$p$ collisions. At the lowest associated particle $p_T$, the away-side shape and yield are modified. These observations are consistent with the scenario of radiative-jet energy loss. For the lowest-$p_T$ trigger correlations, an away-side yield exists and we explore the dependence of the shape of the away-side within the context of an underlying-event model. Correlations are also studied differentially versus event-plane angle $\Psi_n$. The angular correlations show an asymmetry when selecting the sign of the trigger-particle azimuthal angle with respect to the $\Psi_2$ event plane. This asymmetry and the measured suppression of the pair yield out of plane is consistent with a path-length-dependent energy loss. No $\Psi_3$ dependence can be resolved within experimental uncertainties.

33 data tables match query

Higher-order flow harmonics for charged hadrons at midrapidity in Au$+$Au collisions at $\sqrt{s_{NN}}$ and their systematics: $v_2$, $v_3$, $v_4$, and $v_4\{\Psi_2\}$. The source of systematic uncertainties are difference among RXN event-planes, matching cut width for CNT hadron tracks, and difference between $v_n$ measured with RXN and BBC event planes .

Per-trigger yields $Y(\Delta\phi)$ of dihadrons pairs measured in Au$+$Au collisions at$\sqrt{s_{NN}}$ after subtracting the underlying event model with several $p_T$ selections and centralities. Systematic uncertainties are due to track matching and the $v_n$ and due to ZYAM.

Per-trigger yields $Y(\Delta\phi)$ of dihadron pairs measured in Au$+$Au collisions after subtracting the underlying event-model with several $p_T$ selections of the trigger and associated particles ($p_T^{t,a}$ and several centralities. Systematic uncertainties are due to track matching and the $v_n$ and due to ZYAM.

More…

Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized $p+p$, $p+$Al, and $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.Lett. 123 (2019) 122001, 2019.
Inspire Record 1725616 DOI 10.17182/hepdata.141938

We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized $p^{\uparrow}+p$, $p^{\uparrow}+$Al and $p^{\uparrow}+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The measurements have been performed at forward rapidity ($1.4<\eta<2.4$) over the range of $1.8<p_{T}<7.0$ GeV$/c$ and $0.1<x_{F}<0.2$. We observed a positive asymmetry $A_{N}$ for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in $p^{\uparrow}$+$A$ collisions. These results reveal a nuclear dependence of charged hadron $A_N$ in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.

2 data tables match query

$A_N$ as a function of $A^{1/3}$ for positively-charged hadrons at 1.4 < $\eta$ < 2.4, 0.1 < $x_F$ < 0.2, and 1.8 < $p_T$ < 7.0 GeV/$c$ in $p^{\uparrow}$+$p$, $p^{\uparrow}$+Al, and $p^{\uparrow}$+Au collisions.

$A_N$ as a function of $N^{Avg.}_{coll}$ for positively-charged hadrons at 1.4 < $\eta$ < 2.4, 0.1 < $x_F$ < 0.2, and 1.8 < $p_T$ < 7.0 GeV/$c$ in $p^{\uparrow}$+$p$, $p^{\uparrow}$+Al, and $p^{\uparrow}$+Au collisions.


Observation of two narrow states decaying into Xi/c+ gamma and Xi/c0 gamma.

The CLEO collaboration Jessop, C.P. ; Lingel, K. ; Marsiske, H. ; et al.
Phys.Rev.Lett. 82 (1999) 492-496, 1999.
Inspire Record 478217 DOI 10.17182/hepdata.47236

We report the first observation of two narrow charmed strange baryons decaying to $\Xi_c^+\gamma$ and $\Xi_c^0\gamma$, respectively, using data from the CLEO II detector at CESR. We interpret the observed signals as the $\Xi_c^{+\prime}(c{su})$ and $\Xi_c^{0\prime}(c{sd})$, the symmetric partners of the well-established antisymmetric $\Xi_c^+(c[su])$ and $\Xi_c^0(c[sd])$. The mass differences $M(\Xi_c^{+\prime})-M(\Xi_c^+)$ and $M(\Xi_c^{0\prime})-M(\Xi_c^0)$ are measured to be $107.8\pm 1.7\pm 2.5$ and $107.0\pm 1.4\pm 2.5 MeV/c^2$, respectively.

2 data tables match query

The data for two resonances are combined together.

CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. The data for two resonances are combined together.


Cross section and transverse single-spin asymmetry of muons from open heavy-flavor decays in polarized $p$+$p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.D 95 (2017) 112001, 2017.
Inspire Record 1519828 DOI 10.17182/hepdata.142661

The cross section and transverse single-spin asymmetries of $\mu^{-}$ and $\mu^{+}$ from open heavy-flavor decays in polarized $p$+$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX experiment during 2012 at the Relativistic Heavy Ion Collider. Because heavy-flavor production is dominated by gluon-gluon interactions at $\sqrt{s}=200$ GeV, these measurements offer a unique opportunity to obtain information on the trigluon correlation functions. The measurements are performed at forward and backward rapidity ($1.4<|y|<2.0$) over the transverse momentum range of $1.25<p_T<7$ GeV/$c$ for the cross section and $1.25<p_T<5$ GeV/$c$ for the asymmetry measurements. The obtained cross section is compared to a fixed-order-plus-next-to-leading-log perturbative-quantum-chromodynamics calculation. The asymmetry results are consistent with zero within uncertainties, and a model calculation based on twist-3 three-gluon correlations agrees with the data.

4 data tables match query

$A_N$ of negatively-charged muons from open heavy-flavor decays as a function of $p_T$ in the backward ($x_F$ < 0) and forward ($x_F$ > 0) regions.

$A_N$ of positively-charged muons from open heavy-flavor decays as a function of $p_T$ in the backward ($x_F$ < 0) and forward ($x_F$ > 0) regions.

$A_N$ of negatively-charged and positively-charged muons from open heavy-flavor decays as a function of $x_F$, where $x_F$ > 0 is along the direction of the polarized proton.

More…

Direct-Photon Production in p+p Collisions at sqrt(s)=200 GeV at Midrapidity

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 86 (2012) 072008, 2012.
Inspire Record 1115828 DOI 10.17182/hepdata.143075

The differential cross section for the production of direct photons in p+p collisions at sqrt(s)=200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive-direct photons were measured in the transverse-momentum range from 5.5--25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x_T, the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.

3 data tables match query

Cross section of midrapidity inclusive-direct photon production in $p+p$ collisions at $\sqrt{s}$ = 200 GeV as a function of transverse momentum ($p_T$). Asymmetric statistical uncertainties occur in $p_T$ bins with no tagged $π^0$ counts.

Ratio of isolated/inclusive-direct photon (Fig. 13). Upper(+) and lower bounds(-) on systematics can be different, and are listed separately.

Ratio of isolated/inclusive photon from $π^0$ (Fig. 13).


System-size dependence of open-heavy-flavor production in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 90 (2014) 034903, 2014.
Inspire Record 1262739 DOI 10.17182/hepdata.143308

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}$=200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu$+$Cu collisions an enhanced production of electrons is observed relative to $p$$+$$p$ collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/$c$ the nuclear modification factor is $R_{AA}$$\sim$1.4. As the system size increases to more central Cu$+$Cu collisions, the enhancement gradually disappears and turns into a suppression. For $p_T>3$ GeV/$c$, the suppression reaches $R_{AA}$$\sim$0.8 in the most central collisions. The $p_T$ and centrality dependence of $R_{AA}$ in Cu$+$Cu collisions agree quantitatively with $R_{AA}$ in $d+$Au and Au$+$Au collisions, if compared at similar number of participating nucleons $\langle N_{\rm part} \rangle$.

16 data tables match query

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

More…

Nuclear-Modification Factor for Open-Heavy-Flavor Production at Forward Rapidity in Cu+Cu Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 86 (2012) 024909, 2012.
Inspire Record 1102910 DOI 10.17182/hepdata.142604

Background: Heavy-flavor production in p+p collisions tests perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p+p results, quantified with the nuclear-modification factor (R_AA), provides information on both cold- and hot-nuclear-matter effects. Purpose: Determine transverse-momentum, pt, spectra and the corresponding R_AA for muons from heavy-flavor mesons decay in p+p and Cu+Cu collisions at sqrt(s_NN)=200 GeV and y=1.65. Method: Results are obtained using the semi-leptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p_T spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte-Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p+p collisions at sqrt{s}=200 GeV, integrated over pt and in the rapidity range 1.4<y<1.9 is found to be dsigma_ccbar/dy = 0.139 +/- 0.029 (stat) ^{+0.051}_{-0.058} (syst) mb. This result is consistent with calculations and with expectations based on the corresponding midrapidity charm-production cross section measured earlier by PHENIX. The R_AA for heavy-flavor muons in Cu+Cu collisions is measured in three centrality intervals for 1<pt<4 GeV/c. Suppression relative to binary-collision scaling (R_AA<1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured heavy-flavor yield in p+p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu+Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.

7 data tables match query

Production cross section of negative muons from heavy-flavor mesons decay as a function of $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV.

Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in Cu+Cu collisions for three different centrality intervals (40-94%, 20-40%, and 0-20%), scaled by powers of ten for clarity. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.

Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.

More…

Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 103 (2009) 082002, 2009.
Inspire Record 816469 DOI 10.17182/hepdata.57326

The momentum distribution of electrons from semi-leptonic decays of charm and bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative quantum chromodynamics (pQCD) calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is \sigma_{b\b^bar}= 3.2 ^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.

6 data tables match query

Bottom contribution to the electrons from heavy flavor decay as a function of PT. These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The g3data program indicates an extra uncertainty of 0.01 on these values.

Differential bottom production cross section at mid rapidity (y=0) To obtain this value, the differential "bottom-decay" electrons cross-section has been extrapolated to PT=0 using the spectrum shape predicted by pQCD. The b->e branching ratio used was 10 +-1%.

Invariant cross section of electrons from heavy flavor decay versus PT These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The values in the last column indicate the level of uncertainty intoduced by g3data.

More…

Measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV and limits on anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 760 (2016) 448-468, 2016.
Inspire Record 1423069 DOI 10.17182/hepdata.74458

A measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV is presented, using data corresponding to an integrated luminosity of 19.6 inverse femtobarns collected with the CMS detector at the LHC. This measurement is based on the observation of events with large missing energy and with a single photon with transverse momentum above 145 GeV and absolute pseudorapidity in the range |eta| < 1.44. The measured Z gamma to nu nu-bar gamma production cross section, 52.7 +/- 2.1(stat) +/- 6.4 (syst) +/- 1.4 (lumi) fb, agrees well with the standard model prediction of 50.0 +2.4 -2.2 fb. A study of the photon transverse momentum spectrum yields the most stringent limits to date on the anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings.

2 data tables match query

Z gamma -> nu nu gamma production cross section.

One-dimensional 95% CL limits on ZVgamma anomalous trilinear gauge couplings from the Z gamma -> nu nu gamma channel.


Study of photon dissociation in diffractive photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Z.Phys.C 75 (1997) 421-435, 1997.
Inspire Record 442287 DOI 10.17182/hepdata.10933

Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.

4 data tables match query

Fraction of the total photoproduction cross section attributed to the photon dissociation.

The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.

Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.

More…

Nuclear-modification factor of charged hadrons at forward and backward rapidity in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 101 (2020) 034910, 2020.
Inspire Record 1741109 DOI 10.17182/hepdata.106658

The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<\eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<\eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.

11 data tables match query

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Al 0%-100% centrality.

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Au 0%-100% centrality.

RpA of charged hadrons as a function of eta at forward and backward rapidity in p+Al and p+Au 0%-100% centrality.

More…

Prompt and non-prompt J/psi production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 71 (2011) 1575, 2011.
Inspire Record 878118 DOI 10.17182/hepdata.57532

The production of J/psi mesons is studied in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC. The measurement is based on a dimuon sample corresponding to an integrated luminosity of 314 inverse nanobarns. The J/psi differential cross section is determined, as a function of the J/psi transverse momentum, in three rapidity ranges. A fit to the decay length distribution is used to separate the prompt from the non-prompt (b hadron to J/psi) component. Integrated over J/psi transverse momentum from 6.5 to 30 GeV/c and over rapidity in the range |y| < 2.4, the measured cross sections, times the dimuon decay branching fraction, are 70.9 \pm 2.1 (stat.) \pm 3.0 (syst.) \pm 7.8(luminosity) nb for prompt J/psi mesons assuming unpolarized production and 26.0 \pm 1.4 (stat.) \pm 1.6 (syst.) \pm 2.9 (luminosity) nb for J/psi mesons from b-hadron decays.

13 data tables match query

Total cross section within the kinematic limits for prompt and non-prompt J/PSI production times branching ratio into MU+ MU-, assuming zero polarizartion. The second systematic error is the luminosity uncertainty.

Differential inclusive cross J/PSI section for the |rapidity| range 0 to 1.2 for each prompt J/PSI polarization scenario considered.

Differential inclusive cross J/PSI section for the |rapidity| range 1.2 to 1.6 for each prompt J/PSI polarization scenario considered.

More…

Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at sqrt(s) = 8 TeV using H to WW decays

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 03 (2017) 032, 2017.
Inspire Record 1467451 DOI 10.17182/hepdata.77058

The cross section for Higgs boson production in pp collisions is studied using the H to WW decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 inverse femtobarns. The Higgs boson transverse momentum (pT) is reconstructed using the lepton pair pT and missing pT. The differential cross section times branching fraction is measured as a function of the Higgs boson pT in a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 +/- 8 (stat) +/- 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model.

3 data tables match query

The fiducial differential cross section in each Higgs pT bin. The first uncertainty is the total (stat+syst) uncertainty. The second is the statistical uncertainty and the third and fourth are Type A and Type B systematic uncertainties, respectively. The last one is the model dependence uncertainty (Type C).

The measured total cross section in the fiducial region. The first systematic uncertainty is the statistical uncertainty and the second is the systematic.

Correlation matrix among the Higgs pT bins of the differential spectrum.


Search for single production of a vector-like $T$ quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092012, 2022.
Inspire Record 2013051 DOI 10.17182/hepdata.131522

A search is made for a vector-like $T$ quark decaying into a Higgs boson and a top quark in 13 TeV proton-proton collisions using the ATLAS detector at the Large Hadron Collider with a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$. The Higgs-boson and top-quark candidates are identified in the all-hadronic decay mode, where $H\to b\bar{b}$ and $t\to b W \to b q \bar{q}^\prime$ are reconstructed as large-radius jets. The candidate Higgs boson, top quark, and associated B-hadrons are identified using tagging algorithms. No significant excess is observed above the background, so limits are set on the production cross-section of a singlet $T$ quark at 95% confidence level, depending on the mass, $m_T$, and coupling, $\kappa_T$, of the vector-like $T$ quark to Standard Model particles. In the considered mass range between 1.0 and 2.3 TeV, the upper limit on the allowed coupling values increases with $m_T$ from a minimum value of 0.35 for 1.07 < $m_T$ < 1.4 TeV to 1.6 for $m_T$ = 2.3 TeV.

8 data tables match query

Dijet invariant mass distribution for the $SR$ showing the results of the model when fitted to the data. A $T$-quark hypothesis with $m_{T} = 1.6$ TeV and $\kappa_{T} = 0.5$ is used in the fit.

Dijet invariant mass distribution for the $ttNR$ showing the results of the model when fitted to the data. A $T$-quark hypothesis with $m_{T} = 1.6$ TeV and $\kappa_{T} = 0.5$ is used in the fit.

Observed and expected 95% CL upper limits on the single $T$-quark coupling $\kappa_{T}$ as a function of $m_{T}$ are shown.

More…

Search for rare decays of Z and Higgs bosons to J$/\psi$ and a photon in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 94, 2019.
Inspire Record 1700175 DOI 10.17182/hepdata.89175

A search is presented for decays of Z and Higgs bosons to a J$/\psi$ meson and a photon, with the subsequent decay of the J$/\psi$ to $\mu^+\mu^-$. The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 fb$^{-1}$ at $\sqrt{s} =$ 13 TeV collected with the CMS detector at the LHC. The observed limit on the Z $\to$ J$/\psi \gamma$ decay branching fraction, assuming that the J$/\psi$ meson is produced unpolarized, is 1.4 $\times$ 10$^{-6}$ at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from -13.6 to +8.6% with respect to the unpolarized scenario. The observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ where the J$/\psi$ meson is assumed to be transversely polarized is 7.6 $\times$ 10$^{-4}$, a factor of 260 larger than the standard model prediction. The results for the Higgs boson are combined with previous data from proton-proton collisions at $\sqrt{s} =$ 8 TeV to produce an observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ that is a factor of 220 larger than the standard model value.

1 data table match query

Upper observed and expected limits on branching fraction of $Z (H)\rightarrow J/\psi\gamma$ decay of the $Z (H)$ boson.


Search for the decay of a Higgs boson in the $\ell\ell\gamma$ channel in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2018) 152, 2018.
Inspire Record 1678088 DOI 10.17182/hepdata.86538

A search for a Higgs boson decaying into a pair of electrons or muons and a photon is described. Higgs boson decays to a Z boson and a photon (H $\to$ Z$\gamma\to\ell\ell\gamma$, $\ell =$ e or $\mu$), or to two photons, one of which has an internal conversion into a muon pair (H $\to\gamma^{*}\gamma\to\mu\mu\gamma$) were considered. The analysis is performed using a data set recorded by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess above the background prediction has been found. Limits are set on the cross section for a standard model Higgs boson decaying to opposite-sign electron or muon pairs and a photon. The observed limits on cross section times the corresponding branching fractions vary between 1.4 and 4.0 (6.1 and 11.4) times the standard model cross section for H $\to\gamma^{*}\gamma\to\mu\mu\gamma$ (H $\to$ Z$\gamma\to\ell\ell\gamma$) in the 120-130 GeV mass range of the $\ell\ell\gamma$ system. The H $\to\gamma^*\gamma\to\mu\mu\gamma$ and H $\to$ Z$\gamma\to\ell\ell\gamma$ analyses are combined for $m_\mathrm{H} =$ 125 GeV, obtaining an observed (expected) 95% confidence level upper limit of 3.9 (2.0) times the standard model cross section.

3 data tables match query

Exclusion limit, at 95% CL, on the cross section of the $H \rightarrow \gamma^{*}\gamma \rightarrow \mu\mu\gamma$ process relative to the SM prediction, as a function of the Higgs boson mass.

Exclusion limit, at 95% CL, on the cross section of the $H \rightarrow Z\gamma \rightarrow ll\gamma$ process relative to the SM prediction, as a function of the Higgs boson mass.

Exclusion limit, at 95% CL, on the cross section of the $H \rightarrow ll\gamma$ relative to the SM prediction, for an SM Higgs boson of $m_{H} = 125$ GeV. The upper limits of each analysis category, as well as their combinations, are shown.


Heavy-flavor electron-muon correlations in $p+p$ and $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 034915, 2014.
Inspire Record 1263517 DOI 10.17182/hepdata.142078

We report $e^\pm-\mu^\mp$ pair yield from charm decay measured between midrapidity electrons ($|\eta|<0.35$ and $p_T>0.5$ GeV/$c$) and forward rapidity muons ($1.4<\eta<2.1$ and $p_T>1.0$ GeV/$c$) as a function of $\Delta\phi$ in both $p$$+$$p$ and in $d$+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Comparing the $p$$+$$p$ results with several different models, we find the results are consistent with a total charm cross section $\sigma_{c\bar{c}} =$ 538 $\pm$ 46 (stat) $\pm$ 197 (data syst) $\pm$ 174 (model syst) $\mu$b. These generators also indicate that the back-to-back peak at $\Delta\phi = \pi$ is dominantly from the leading order contributions (gluon fusion), while higher order processes (flavor excitation and gluon splitting) contribute to the yield at all $\Delta\phi$. We observe a suppression in the pair yield per collision in $d$+Au. We find the pair yield suppression factor for $2.7<\Delta\phi<3.2$ rad is $J_{dA}$ = 0.433 $\pm$ 0.087 (stat) $\pm$ 0.135 (syst), indicating cold nuclear matter modification of $c\bar{c}$ pairs.

4 data tables match query

The fully-corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $p$+$p$.

The fully corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $d$+Au.

$J_{dA}$ plotted as a function of $\Delta\phi$.

More…

Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV via Higgs boson decays to $\tau$ leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2019) 093, 2019.
Inspire Record 1693616 DOI 10.17182/hepdata.87257

A search for the standard model Higgs boson produced in association with a W or a Z boson and decaying a pair of $\tau$ leptons is performed. A data sample of proton-proton collisions collected at $\sqrt{s} =$ 13 TeV by the CMS experiment at the CERN LHC is used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The signal strength is measured relative to the expectation for the standard model Higgs boson, yielding $\mu =$ 2.5 $^{+1.4} _{-1.3}$. These results are combined with earlier CMS measurements targeting Higgs boson decays to a pair of $\tau$ leptons, performed with the same data set in the gluon fusion and vector boson fusion production modes. The combined signal strength is $\mu =$ 1.24 $^{+0.29} _{-0.27}$ (1.00 $^{+0.24} _{-0.23}$ expected), and the observed significance is 5.5 standard deviations (4.8 expected) for a Higgs boson mass of 125 GeV.

1 data table match query

Best fit signal strength per production mode, for mH = 125.09 GeV. The constraints from the global fit are used to extract each of the individual best fit signal strengths. The VH analyses are combined with the ggH and VBF analysis.


Search for a singly produced third-generation scalar leptoquark decaying to a $\tau$ lepton and a bottom quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2018) 115, 2018.
Inspire Record 1677275 DOI 10.17182/hepdata.84396

A search is presented for a singly produced third-generation scalar leptoquark decaying to a $\tau$ lepton and a bottom quark. Associated production of a leptoquark and a $\tau$ lepton is considered, leading to a final state with a bottom quark and two $\tau$ leptons. The search uses proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Upper limits are set at 95% confidence level on the production cross section of the third-generation scalar leptoquarks as a function of their mass. From a comparison of the results with the theoretical predictions, a third-generation scalar leptoquark decaying to a $\tau$ lepton and a bottom quark, assuming unit Yukawa coupling ($\lambda$), is excluded for masses below 740 GeV. Limits are also set on $\lambda$ of the hypothesized leptoquark as a function of its mass. Above $\lambda =$ 1.4, this result provides the best upper limit on the mass of a third-generation scalar leptoquark decaying to a $\tau$ lepton and a bottom quark.

7 data tables match query

The product of acceptance, efficiency, and branching fraction as a function of leptoquark (LQ) mass for the single production of LQs in each of the three channels considered: tau-tau (black solid line), mu-tau (red dashed line), and e-tau (blue dotted line). The efficiency is calculated with respect to all event selections mentioned in the paper. The uncertainty refers to statistical uncertainty only.

Observed ST distribution in the e-tau signal region, compared to the expected SM background contributions. The distribution labeled electroweak contains the contributions from W+jets, Z+jets, and diboson processes. The signal distributions for single-leptoquark (LQ) production with mass 700 GeV are overlaid to illustrate the sensitivity. For the signal normalization, lambda = 1 and beta = 1 are assumed. The background uncertainty bands represent the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panels show the ratio between the observed and expected events in each bin. In all plots, the horizontal and vertical error bars on the data points represent the bin widths and the Poisson uncertainties, respectively.

Observed ST distribution in the mu-tau signal region, compared to the expected SM background contributions. The distribution labeled electroweak contains the contributions from W+jets, Z+jets, and diboson processes. The signal distributions for single-leptoquark (LQ) production with mass 700 GeV are overlaid to illustrate the sensitivity. For the signal normalization, lambda = 1 and beta = 1 are assumed. The background uncertainty bands represent the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panels show the ratio between the observed and expected events in each bin. In all plots, the horizontal and vertical error bars on the data points represent the bin widths and the Poisson uncertainties, respectively.

More…

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

23 data tables match query

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 2360 GeV.

More…

Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 112 (2014) 252301, 2014.
Inspire Record 1256626 DOI 10.17182/hepdata.141624

The PHENIX experiment has measured open heavy-flavor production via semileptonic decay muons over the transverse momentum range 1 < pT < 6 GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p+p collisions at ?sNN = 200 GeV. In central d+Au collisions an enhancement (suppression) of heavy-flavor muon production is observed at backward (forward) rapidity relative to the yield in p+p collisions scaled by the number of binary collisions. Modification of the gluon density distribution in the Au nucleus contributes in terms of anti-shadowing enhancement and shadowing suppression; however, the enhancement seen at backward rapidity exceeds expectations from this effect alone. These results, implying an important role for additional cold nuclear matter effects, serves as a key baseline for heavy-quark measurements in A+A collisions and in constraining the magnitude of charmonia breakup effects at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

13 data tables match query

Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).

Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).

Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).

More…

Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 04 (2022) 048, 2022.
Inspire Record 1972089 DOI 10.17182/hepdata.114361

A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.

7 data tables match query

Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.

More…

Measurement of the t-tbar production cross section in the e-mu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 029, 2016.
Inspire Record 1426692 DOI 10.17182/hepdata.74208

The inclusive cross section for top quark pair production is measured in proton-proton collisions at sqrt(s) = 7 and 8 TeV, corresponding to 5.0 and 19.7 invers-femtobarns, respectively, with the CMS experiment at the LHC. The cross sections are measured in the electron-muon channel using a binned likelihood fit to multi-differential final state distributions related to identified b quark jets and other jets in the event. The measured cross section values are 173.6 +/- 2.1 (stat) +4.5-4.0 (syst) +/- 3.8 (lumi) pb at sqrt(s) = 7 TeV, and 244.9 +/- 1.4 (stat) +6.3-5.5 (syst) +/- 6.4 (lumi) pb at sqrt(s) = 8 TeV, in good agreement with QCD calculations at next-to-next-to-leading-order accuracy. The ratio of the cross sections measured at 7 and 8 TeV is determined, as well as cross sections in the fiducial regions defined by the acceptance requirements on the two charged leptons in the final state. The cross section results are used to determine the top quark pole mass via the dependence of the theoretically predicted cross section on the mass, giving a best result of 173.8 +1.7-1.8 GeV. The data at sqrt(s) = 8 TeV are also used to set limits, for two neutralino mass values, on the pair production of supersymmetric top squarks with masses close to the top quark mass.

3 data tables match query

Measurement of the visible $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV. The visible cross section is defined for events containing an oppositely charged $\rm{e}\mu$ pair from the decay chain ${\rm t} \rightarrow {\rm W b} \rightarrow {\ell} \nu {\rm b}$ (including ${\rm W} \rightarrow \tau \nu \rightarrow {\ell} \nu \nu \nu$) and with both leptons satisfying $p_T > 20\, \rm{GeV}$ and $|{\eta}| < 2.4$.

Measurement of the inclusive $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV.

Top quark pole mass at NNLO+NNLL extracted by comparing the measured $t\bar{t}$ production cross sections at 7 and 8 TeV with predictions employing different PDF sets. The uncertainties of the CT14 PDF set are scaled to 68% confidence level.


Centrality dependence of direct photon production in s(NN)**(1/2) = 200-GeV Au + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 232301, 2005.
Inspire Record 678021 DOI 10.17182/hepdata.141029

The first measurement of direct photons in Au+Au collisions at sqrt(s_NN) = 200 GeV is presented. The direct photon signal is extracted as a function of the Au+Au collision centrality and compared to NLO pQCD calculations. The direct photon yield is shown to scale with the number of nucleon-nucleon collisions for all centralities.

5 data tables match query

Double ratio of measured $(\gamma/\pi^0)_{Measured}$ invariant yield ratio to the background decay $(\gamma/\pi^0)_{Background}$ ratio as a function of $p_T$ for minimum bias and for five centralities of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

Double ratio of measured $(\gamma/\pi^0)_{Measured}$ invariant yield ratio to the background decay $(\gamma/\pi^0)_{Background}$ ratio as a function of $p_T$ for minimum bias and for five centralities of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

Direct $\gamma$ invariant yields as a function of transverse momentum for 9 centrality selections and minimum bias Au+AU collisions at $\sqrt{s_{NN}}$ = 200 GeV. Data with no errors represents 90% confidence level upper limit. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

More…

Measurement of identified pi0 and inclusive photon v(2) and implication to the direct photon production in s(NN)**(1/2) = 200-GeV Au + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 032302, 2006.
Inspire Record 690050 DOI 10.17182/hepdata.142374

The azimuthal distribution of identified pi^0 and inclusive photons has been measured in sqrt{s_{NN}} = 200 GeV Au+Au collisions with the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The second harmonic parameter (v_2) was measured to describe the observed anisotropy of the azimuthal distribution. The measured inclusive photon v_2 is consistent with the value expected for the photons from hadron decay and is also consistent with the lack of direct photon signal over the measured p_T range 1-6 GeV/c. An attempt is made to extract v_2 of direct photons.

5 data tables match query

The measured $v_2$ of $\pi^0$ ($v_2^{\pi^0}$) for 4 centrality selections.

The measured $v_2$ of inclusive photon ($v_2^{inclusive \gamma}$) for 4 centrality selections.

The expected photon $v_2$ from hadronic decay $v_2^{(b.g.)}$ and the subtracted $v_2$ quantity $R v_2^{(inclusive \gamma)}$ - $v_2^{(b.g.)}$.

More…

Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2018) 088, 2018.
Inspire Record 1657397 DOI 10.17182/hepdata.85739

A search for a new heavy particle decaying to a pair of vector bosons (WW or WZ) is presented using data from the CMS detector corresponding to an integrated luminosity of 35.9 fb$^{-1}$ collected in proton-proton collisions at a centre-of-mass energy of 13 TeV in 2016. One of the bosons is required to be a W boson decaying to e$\nu$ or $\mu\nu$, while the other boson is required to be reconstructed as a single massive jet with substructure compatible with that of a highly-energetic quark pair from a W or Z boson decay. The search is performed in the resonance mass range between 1.0 and 4.5 TeV. The largest deviation from the background-only hypothesis is observed for a mass near 1.4 TeV and corresponds to a local significance of 2.5 standard deviations. The result is interpreted as an upper bound on the resonance production cross section. Comparing the excluded cross section values and the expectations from theoretical calculations in the bulk graviton and heavy vector triplet models, spin-2 WW resonances with mass smaller than 1.07 TeV and spin-1 WZ resonances lighter than 3.05 TeV, respectively, are excluded at 95% confidence level.

3 data tables match query

Exclusion limits on the product of the production cross section and the branching fraction for a new spin-2 resonance decaying to WW, as a function of the resonance mass hypothesis.

Exclusion limits on the product of the production cross section and the branching fraction for a new spin-1 resonance decaying to WZ, as a function of the resonance mass hypothesis.

Signal selection efficiency times acceptance as a function of resonance mass for a spin-2 bulk graviton decaying to WW and a spin-1 W' decaying to WZ.


Measurement of prompt and nonprompt J/psi production in pp and pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 77 (2017) 269, 2017.
Inspire Record 1512296 DOI 10.17182/hepdata.77480

This paper reports the measurement of J/psi meson production in proton-proton (pp) and proton-lead (pPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28 inverse picobarns and 35 inverse nanobarns for pp and pPb collisions, respectively. Prompt and nonprompt J/psi mesons, the latter produced from the decay of B mesons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of 2 < pt < 30 GeV/c, and center-of-mass rapidity ranges of abs(y[CM]) < 2.4 (pp) and -2.87 < y[CM] < 1.93 (pPb). The nuclear modification factor, R[pPb], is measured as functions of both pt and y[CM]. Small modifications of the J/psi cross sections are observed in pPb relative to pp collisions. The ratio of J/psi production cross sections in p-going and Pb-going directions, R[FB], studied as functions of pt and y[CM], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt J/psi production.

26 data tables match query

Differential cross section (multiplied by the dimuon branching fraction) of prompt J/$\psi$ mesons in pp collisions at forward $y_{\mathrm{CM}}$.

Differential cross section (multiplied by the dimuon branching fraction) of prompt J/$\psi$ mesons in pp collisions at backward $y_{\mathrm{CM}}$.

Differential cross section (multiplied by the dimuon branching fraction) of prompt J/$\psi$ mesons in pPb collisions at forward $y_{\mathrm{CM}}$.

More…

Saturation of azimuthal anisotropy in Au + Au collisions at s(NN)**(1/2) = 62-GeV - 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 232302, 2005.
Inspire Record 664944 DOI 10.17182/hepdata.141741

New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.

10 data tables match query

Assorted-$p_T$ correlation functions (0.65 < $p_{T,ref}$ < 2.5 GeV/$c$) for charged hadrons of 0.5 < $p_T$ < 0.7 GeV/$c$ and 1.0 < $p_T$ < 1.5 obtained in Au+Au collisions at $\sqrt{S_{NN}}$ = 62.4 GeV.

Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via cumulants method

Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via correlation function method

More…

Search for Higgs and Z boson decays to J/$\psi$ or $\Upsilon$ pairs in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 797 (2019) 134811, 2019.
Inspire Record 1736895 DOI 10.17182/hepdata.90709

A search for decays of the Higgs and Z boson to pairs of J/$\psi$ or $\Upsilon$(nS) (n=1, 2, 3) mesons, with their subsequent decay to $\mu^+\mu^-$ pairs, is presented. The analysis uses data from proton-proton collisions at $\sqrt{s}=$ 13 TeV, collected with the CMS detector at the LHC in 2017 and corresponding to an integrated luminosity of 37.5 fb$^{-1}$. While an observation of such a decay with this sample would indicate the presence of physics beyond the standard model, no significant excess is observed. Upper limits at 95% confidence level are placed on the branching fractions of these decays. In the J/$\psi$ pair channel, the limits are 1.8$\times$10$^{-3}$ and 2.2$\times$10$^{-6}$ for the Higgs and Z boson, respectively, while in the combined $\Upsilon$(nS) pair channel, the limits are 1.4$\times$ 10$^{-3}$ and 1.5$\times$10$^{-6}$, respectively, when the mesons from the Higgs and Z boson decay are assumed to be unpolarized. When fully longitudinal and transverse polarizations are considered the limits reduce by about 22-29% and increase by about 10-13%, respectively.

1 data table match query

Exclusion limits at 95% CL for the branching fractions ($\mathcal{B}$s) of the $H$ and $Z$ boson decays to $J/\psi$ or $\Upsilon$ mesons pairs. The second column lists the observed limits. The third column shows the median expected limits with the upper and lower bounds in the expected 68% CL intervals.


Nuclear modification of electron spectra and implications for heavy quark energy loss in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 032301, 2006.
Inspire Record 695305 DOI 10.17182/hepdata.57257

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.

6 data tables match query

Inclusive and non photonic electrons invariant yield versus PT, for minimum bias reactions.

Non photonic electrons invariant yield versus PT for different ranges of centrality.

Nuclear modification factor as a function of PT, for 0-10% central reactions Note that the systematic error given is related to the the uncertainties in the p+p measurements.An additional systematic error, symmetrical on the + and - side, related to the uncertainties in the Au+Au measurement, is given in the second column. Another, PT-independant, 13%systematic error due to the uncertainty on the overlap function and the Pi0 yield normalization is to add.

More…

Backward pi+ p elastic scattering from 2.18 to 5.25 gev/c

Sidwell, R.A. ; Crittenden, R.R. ; Galloway, K.F. ; et al.
Phys.Rev.D 3 (1971) 1523-1535, 1971.
Inspire Record 68060 DOI 10.17182/hepdata.23679

Differential cross sections are presented for pion-proton elastic scattering in the angular range −0.6≳cosθc.m.≳−0.98 at 15 incident π+ momenta from 2.18−5.25 GeVc. The angular distributions rise steeply near 180° at all momenta. For laboratory momenta ≳2.75 GeVc they show a minimum at u≈−0.17 (GeVc)2 and a broad maximum near u≈−0.6 (GeVc)2. When the data are plotted versus s, for fixed u, a strong signal from the Δ(2420) resonance is observed. The data are compared with a direct-channel resonance model and with a Regge model which considers the exchange of the Nα, Nγ, and Δδ Regge trajectories. The qualitative success of both the direct-channel resonance model and the Regge model lends support to the concept of duality.

15 data tables match query

No description provided.

No description provided.

No description provided.

More…

Pi- p backward elastic scattering from 2.38 to 3.00 gev/c

Crittenden, R.R. ; Galloway, K.F. ; Heinz, R.M. ; et al.
Phys.Rev.D 1 (1970) 3050-3053, 1970.
Inspire Record 61651 DOI 10.17182/hepdata.25007

This paper presents differential cross sections for backward π−p elastic scattering in the angular region −0.55≥cosθc.m.≥−0.98 for five incident momenta: 2.38, 2.50, 2.65, 2.80, and 3.00 GeV/c. The structure of the angular distribution undergoes a marked change over this momentum interval. A pronounced dip near 180°, which is seen for momenta ≲2.50 GeV/c, becomes a sharp peak at 2.80 and 3.00 GeV/c. A minimum in the cross section at cosθc.m.≃−0.7 is indicated at all momenta. In addition, a dip in the differential cross section appears at cosθc.m.≃−0.92 at 3.00 GeV/c. A good fit to the data from 2.1 to 3.0 GeV/c is obtained with a direct-channel resonance model.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of b hadron lifetimes in pp collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 457, 2018.
Inspire Record 1632444 DOI 10.17182/hepdata.88921

Measurements are presented of the lifetimes of the B$^0$, B$^0_\mathrm{s}$, $\Lambda^0_\mathrm{b}$, and B$_\mathrm{c}^+$ hadrons using the decay channels B$^0\to$ J/$\psi$K*(892)$^0$, B$^0\to$J/$\psi$K$^0_\mathrm{S}$, B$^0_\mathrm{s}\to$J/$\psi \pi^+\pi^-$, B$^0_\mathrm{s}\to$J/$\psi\phi$(1020), $\Lambda^0_\mathrm{b}\to$J/$\psi\Lambda^0$, and B$_\mathrm{c}\to$J/$\psi\pi^+$. The data sample, corresponding to an integrated luminosity of 19.7 fb$^{-1}$, was collected by the CMS detector at the LHC in proton-proton collisions at $\sqrt{s}=$ 8 TeV. The B$^0$ lifetime is measured to be 453.0 $\pm$ 1.6 (stat) $\pm$ 1.8 (syst) $\mu$m in J/$\psi$K*(892)$^0$ and 457.8 $\pm$ 2.7 (stat) $\pm$ 2.8 (syst) $\mu$m in J/$\psi$K$^0_\mathrm{S}$, which results in a combined measurement of $c\tau_{\mathrm{B}^0} =$ 454.1 $\pm$ 1.4 (stat) $\pm$ 1.7 (syst) $\mu$m. The effective lifetime of the B$^0_\mathrm{s}$ meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $c\tau_{\mathrm{B}^0_\mathrm{s} \to \mathrm{J}/\psi \pi^+\pi^-} =$ 502.7 $\pm$ 10.2 (stat) $\pm$ 3.4 (syst) $\mu$m and $c\tau_{\mathrm{B}^0_\mathrm{s} \to \mathrm{J}/\psi\phi(1020)} =$ 443.9 $\pm$ 2.0 (stat) $\pm$ 1.5 (syst) $\mu$m. The $\Lambda^0_\mathrm{b}$ lifetime is found to be 443.9 $\pm$ 8.2 (stat) $\pm$ 2.8 (syst) $\mu$m. The precision from each of these channels is as good as or better than previous measurements. The B$_\mathrm{c}^+$ lifetime, measured with respect to the B$^+$ to reduce the systematic uncertainty, is 162.3 $\pm$ 7.8 (stat) $\pm$ 4.2 (syst) $\pm$ 0.1 $(\tau_{\mathrm{B}^+})$ $\mu$m. All results are in agreement with current world-average values.

3 data tables match query

Measurement of b hadron lifetimes in pp collisions at $\sqrt{s}=8$TeV.

Measurement of b hadron lifetimes ratios in pp collisions at $\sqrt{s}=8$TeV.

Estimate $\Gamma_\mathrm{d}$ and $\Delta \Gamma_\mathrm{d}$ in pp collisions at $\sqrt{s}=8$TeV.


Version 2
Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 600, 2021.
Inspire Record 1839446 DOI 10.17182/hepdata.97041

The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.

608 data tables match query

Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.

Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.

Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.

More…

Observation of the Decay $B \to$ F X

The CLEO collaboration Haas, P. ; Hempstead, M. ; Jensen, T. ; et al.
Phys.Rev.Lett. 56 (1986) 2781, 1986.
Inspire Record 228879 DOI 10.17182/hepdata.20235

We present evidence for inclusive F-meson production in B-meson decay. The product branching fraction B(B→FX)B(F+→φπ+) is measured to be 0.0038±0.010. The F momentum spectrum indicates the presence of a large component of two-body final states in the decay B→FX.

3 data tables match query

No description provided.

DATA SAMPLE CONSISTED OF 77 1/PB. DATA TAKEN ON THE PEAK OF THE UPSI(10575).

CONTINUUM DATA SAMPLE CONSISTED OF 36 1/PB. ENERGY JUST BELOW THE UPSI(10575).


Decay of the psi(3770) to Light Hadrons

The CLEO collaboration Adams, G.S. ; Anderson, M. ; Cummings, J.P. ; et al.
Phys.Rev.D 73 (2006) 012002, 2006.
Inspire Record 691720 DOI 10.17182/hepdata.52474

We describe a search for psi(3770) decay to two-body non-DDbar final states in e+e- data produced by the CESR collider and analyzed with the CLEO-c detector. Vector-pseudoscalar production of Rho0Pi0, Rho+Pi-, OmegaPi0, PhiPi0, RhoEta, OmegaEta, PhiEta, RhoEtaPrime, OmegaEtaPrime, PhiEtaPrime, Kstar0 K0bar, and Kstar+K- is studied along with that of BOnePi (BOne0Pi0 and BOne+Pi-) and Pi+Pi-Pi0. A statistically significant signal is found for PhiEta, at an excess cross section of (2.4 +- 0.6) pb [Gamma_{PhiEta} (psi(3770)) =(74 +- 16)Mev], and a suggestive suppression of Pi+Pi-Pi0 and RhoPi. We conclude with form factor determinations for OmegaPi0, RhoEta, and RhoEtaPrime.

1 data table match query

Cross sections at 3.671 and 3.773 GeV.


Observation of Higgs boson decay to bottom quarks

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 121801, 2018.
Inspire Record 1691854 DOI 10.17182/hepdata.86132

The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, are described. When combined with previous VH measurements using data collected at $\sqrt{s}=$ 7, 8, and 13 TeV, an excess of events is observed at $m_\mathrm{H} =$ 125.09 GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01 $\pm$ 0.22. The combination of this result with searches by the CMS experiment for H $\to\mathrm{b\overline{b}}$ in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04 $\pm$ 0.20.

2 data tables match query

Expected and observed significances, in number of standard deviations, and observed signal strengths for the VH production process with H-->b bbar. Results are shown separately for 2017 data, combined Run 2 (2016 and 2017 data), and for the combination of the Run 1 and Run 2 data. For the 2017 analysis, results are shown separately for the individual mu value for each channel from a combined simultaneous fit to all channels. All results are obtained for mH=125.09 GeV. Data are from Table 2 and 2016 added from Figure 1b.

Best-fit value of the H-->b bbar signal strength with its 1 sigma systematic (red) and total (blue) uncertainties for the five individual production modes considered, as well as the overall combined result. The vertical dashed line indicates the standard model expectation. All results are extracted from a single fit combining all input analyses, with mH = 125.09 GeV. Data from Figure 3.


Studies of new Higgs boson interactions through nonresonant $HH$ production in the $b\bar{b}\gamma\gamma$ final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 01 (2024) 066, 2024.
Inspire Record 2712676 DOI 10.17182/hepdata.144918

A search for nonresonant Higgs boson pair production in the $b\bar{b}\gamma\gamma$ final state is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this final state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs ($H$) boson self-coupling modifier $\kappa_\lambda$ but also of the quartic $HHVV$ ($V=W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed upper limit $\mu_{HH}<4.0$ is set at 95% confidence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confidence intervals for the coupling modifiers are $-1.4<\kappa_\lambda<6.9$ and $-0.5<\kappa_{2V}<2.7$, assuming all other Higgs boson couplings except the one under study are fixed to the Standard Model predictions. The results are interpreted in the Standard Model effective field theory and Higgs effective field theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions.

45 data tables match query

Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$, when all other coupling modifiers are fixed to their SM predictions.

Expected (dashed line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$, when all other coupling modifiers are fixed to their SM predictions.

Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{2V}$, when all other coupling modifiers are fixed to their SM predictions.

More…

Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 137745, 2023.
Inspire Record 2175556 DOI 10.17182/hepdata.135471

Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b} \gamma \gamma$ decay channels with single-Higgs boson analyses targeting the $\gamma \gamma$, $ZZ^*$, $WW^*$, $\tau^+ \tau^-$ and $b\bar{b}$ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton$-$proton collisions at $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 126$-$139 fb$^{-1}$. The combination of the double-Higgs analyses sets an upper limit of $\mu_{HH} < 2.4$ at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling ($\lambda_{HHH}$), values outside the interval $-0.4< \kappa_{\lambda}=(\lambda_{HHH}/\lambda_{HHH}^{\textrm{SM}})< 6.3$ are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL.

44 data tables match query

Observed and expected 95% CL upper limits on the signal strength for double-Higgs production from the bbbb, bb$\tau\tau$ and bb$\gamma\gamma$ decay channels, and their statistical combination. The value $m_H$ = 125.09 GeV is assumed when deriving the predicted SM cross-section. The expected limit and the corresponding error bands are derived assuming the absence of the HH process and with all nuisance parameters profiled to the observed data.

Observed and expected 95% CL exclusion limits on the production cross-sections of the combined ggF HH and VBF HH processes as a function of $\kappa_\lambda$, for the three double-Higgs search channels and their combination. The expected limits assume no HH production. The red line shows the theory prediction for the combined ggF HH and VBF HH cross-section as a function of $\kappa_\lambda$ where all parameters and couplings are set to their SM values except for $\kappa_\lambda$. The band surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section.

Observed and expected 95% CL exclusion limits on the production cross-sections of the VBF HH process as a function of $\kappa_{2V}$, for the three double-Higgs search channels and their combination. The expected limits assume no VBF HH production. The red line shows the predicted VBF HH cross-section as a function of $\kappa_{2V}$. The bands surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section. The uncertainty band is smaller than the width of the plotted line.

More…

Measurements of Z Boson Resonance Parameters in e+ e- Annihilation

Abrams, G.S. ; Adolphsen, Chris ; Averill, D. ; et al.
Phys.Rev.Lett. 63 (1989) 2173, 1989.
Inspire Record 281818 DOI 10.17182/hepdata.20033

We have measured the mass of the Z boson to be 91.14±0.12 GeV/c2, and its width to be 2.42−0.35+0.45 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.46±0.10 GeV, corresponding to 2.8±0.6 neutrino species, with a 95%-confidence-level upper limit of 3.9.

1 data table match query

No description provided.


Measurement of high-Q**2 charged-current e+ p deep inelastic scattering cross sections at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 411-428, 2000.
Inspire Record 503434 DOI 10.17182/hepdata.43950

The e^+p charged-current deep inelastic scattering cross sections, $d\sigma/dQ^2$ for Q^2 between 200 and 60000 GeV^2, and $d\sigma/dx$ and $d\sigma/dy$ for Q^2 > 200 GeV^2, have been measured with the ZEUS detector at HERA. A data sample of 47.7 pb^-1, collected at a center-of-mass energy of 300 GeV, has been used. The cross section $d\sigma/dQ^2$ falls by a factor of about 50000 as Q^2 increases from 280 to 30000 GeV^2. The double differential cross section $d^2\sigma/dxdQ^2$ has also been measured. A comparison between the data and Standard Model (SM) predictions shows that contributions from antiquarks ($\bar{u}$ and $\bar{c}$) and quarks (d and s) are both required by the data. The predictions of the SM give a good description of the full body of the data presented here. A comparison of the charged-current cross section $d\sigma/dQ^2$ with the recent ZEUS results for neutral-current scattering shows that the weak and electromagnetic forces have similar strengths for Q^2 above $M^2_W, M^2_Z$. A fit to the data for $d\sigma/dQ^2$ with the Fermi constant $G_F$ and $M_W$ as free parameters yields $G_F = (1.171 \pm 0.034 (stat.) ^{+0.026}_{-0.032} (syst.) ^{+0.016}_{-0.015} (PDF)) \times 10^{-5} GeV^{-2}$ and $M_W = 80.8 ^{+4.9}_{-4.5} (stat.) ^{+5.0}_{-4.3} (syst.) ^{+1.4}_{-1.3} (PDF) GeV$. Results for $M_W$, where the propagator effect alone or the SM constraint between $G_F$ and $M_W$ have been considered, are also presented.

11 data tables match query

The differential cross section DSIG/DQ**2.

The differential cross section DSIG/DX.

The differential cross section DSIG/DY.

More…

Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 98 (2018) 072004, 2018.
Inspire Record 1672014 DOI 10.17182/hepdata.143196

Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azimuthal nearly back-to-back region $\Delta\phi\sim\pi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of $p_{\rm out}$, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at $\sqrt{s}=510$ GeV. The nonperturbative jet widths also appear to increase with $\sqrt{s}$ at a similar $x_T$, which is qualitatively consistent to similar measurements in Drell-Yan interactions. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed to compare to these measurements.

36 data tables match query

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

More…

Search for new phenomena in $pp$ collisions in final states with tau leptons, $b$-jets, and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112005, 2021.
Inspire Record 1907601 DOI 10.17182/hepdata.105998

A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

89 data tables match query

Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.

Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

More…