Studies of beauty suppression via nonprompt D$^0$ mesons in PbPb collisions at $\sqrt{s_\mathrm{NN}}=$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 123 (2019) 022001, 2019.
Inspire Record 1700575 DOI 10.17182/hepdata.88297

The transverse momentum spectra of D$^0$ mesons from b hadron decays are measured at midrapidity ($|y|$ $<$ $1$) in pp and PbPb collisions at a nucleon-nucleon center of mass energy of 5.02 TeV with the CMS detector at the LHC. The D$^0$ mesons from b hadron decays are distinguished from prompt D$^0$ mesons by their decay topologies. In PbPb collisions, the B $\to$ D$^0$ yield is found to be suppressed in the measured $p_\mathrm{T}$ range from 2 to 100 GeV$/c$ as compared to pp collisions. The suppression is weaker than that of prompt D$^0$ mesons and charged hadrons for $p_\mathrm{T}$ around 10 GeV$/c$. While theoretical calculations incorporating partonic energy loss in the quark-gluon plasma can successfully describe the measured B $\to$ D$^0$ suppression at higher $p_\mathrm{T}$, the data show an indication of larger suppression than the model predictions in the range of 2 $\lt$ $p_\mathrm{T}$ $\lt$ 5 GeV$/c$.

4 data tables match query

$ {{{\mathrm {B}}}\to {\mathrm {D^0}}} $ $ {p_{\mathrm {T}}} $ -differential cross section in pp collisions at ${\sqrt {\smash [b]{s}}} = $ 5.02 TeV.

$ {{{\mathrm {B}}}\to {\mathrm {D^0}}} $ $ {p_{\mathrm {T}}} $ -differential invariant yield in PbPb collisions normalized with $ {T_{\mathrm {AA}}} $ at ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV.

The $\text {data}/\mathrm {FONLL}$ ratio for the $ {{{\mathrm {B}}}\to {\mathrm {D^0}}} $ $ {p_{\mathrm {T}}} $ spectra in pp collisions.

More…

Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 509, 2018.
Inspire Record 1644903 DOI 10.17182/hepdata.80816

The nuclear modification factors of J/$\psi$ and $\psi$(2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 $\mu$b$^{-1}$ and 28 pb$^{-1}$, respectively. The measurements are performed in the dimuon rapidity range of $|y| <$ 2.4 as a function of centrality, rapidity, and transverse momentum (p$_\mathrm{T}$) from p$_\mathrm{T}=$ 3 GeV/$c$ in the most forward region and up to 50 GeV/$c$. Both prompt and nonprompt (coming from b hadron decays) mesons are observed to be increasingly suppressed with centrality, with a magnitude similar to the one observed at $\sqrt{s_{\mathrm{NN}}}=$ 2.76 TeV for the two J/$\psi$ meson components. No dependence on rapidity is observed for either prompt or nonprompt J/$\psi$ mesons. An indication of a lower prompt J/$\psi$ meson suppression at p$_\mathrm{T} >$ 25 GeV/$c$ is seen with respect to that observed at intermediate p$_\mathrm{T}$. The prompt $\psi$(2S) meson yield is found to be more suppressed than that of the prompt J/$\psi$ mesons in the entire p$_\mathrm{T}$ range.

32 data tables match query

Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon pT for pp and PbPb collisions, for all centralities.

Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon rapidity for pp and PbPb collisions, for all centralities.

Differential cross section of prompt J/psi mesons as a function of dimuon pT in pp and PbPb collisions. The PbPb cross sections are normalised by TAA for direct comparison. Global uncertainties arise from the integrated luminosity uncertainty in pp collisions, and the number of minimum bias events and TAA uncertainties for PbPb collisions.

More…

Medium effects in proton-induced $K^{0}$ production at 3.5 GeV

The HADES collaboration Agakishiev, G. ; Arnold, O. ; Belver, D. ; et al.
Phys.Rev.C 90 (2014) 054906, 2014.
Inspire Record 1292844 DOI 10.17182/hepdata.64407

We present the analysis of the inclusive $K^{0}$ production in p+p and p+Nb collisions measured with the HADES detector at a beam kinetic energy of 3.5 GeV. Data are compared to the GiBUU transport model. The data suggest the presence of a repulsive momentum-dependent kaon potential as predicted by the Chiral Perturbation Theory (ChPT). For the kaon at rest and at normal nuclear density, the ChPT potential amounts to $\approx 35$ MeV. A detailed tuning of the kaon production cross sections implemented in the model has been carried out to reproduce the experimental data measured in p+p collisions. The uncertainties in the parameters of the model were examined with respect to the sensitivity of the experimental results from p+Nb collisions to the in-medium kaon potential.

2 data tables match query

The K0 production cross section in P P collisions.

The K0 production cross section in P + NB collisions. The uncertainty given on SIG(P NB --> K0 X) is the dominating absolute normalization uncertainty.


Energy dependence of the analyzing power for the p p ---> pi+ d reaction in the energy region 500-MeV - 800-MeV

Yoshida, H.Y. ; Shimizu, H. ; Ohnuma, H. ; et al.
Nucl.Phys.A 541 (1992) 443-452, 1992.
Inspire Record 320645 DOI 10.17182/hepdata.36702

The energy dependence of the analyzing power A y for the pp → π + d reaction was measured during polarized beam acceleration from 500 to 800 MeV, using an internal target inserted into the beam every acceleration cycle. The measurements were made with the pion laboratory angle fixed at 68° and with incident proton energy bins varying from 10 to 30 MeV in width. The statistical accuracy per bin is ΔA y ⋍ 0.06 .

1 data table match query

Statistical errors onnly.


Energy dependent measurements of the p p elastic analyzing power and narrow dibaryon resonances

Kobayashi, Y. ; Kobayashi, K. ; Nakagawa, T. ; et al.
Nucl.Phys.A 569 (1994) 791-820, 1994.
Inspire Record 320015 DOI 10.17182/hepdata.38528

The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.

1 data table match query

Statistical errors only.


Precision measurements of the pp ---> pi+ pn and pp ---> pi+ d reactions: Importance of long-range and tensor force effects

The COSY-GEM collaboration Budzanowski, A. ; Chatterjee, A. ; Hawranek, P. ; et al.
Phys.Rev.C 79 (2009) 061001, 2009.
Inspire Record 818511 DOI 10.17182/hepdata.52961

Inclusive measurements of pion production in proton--proton collisions in the forward direction were undertaken at 400 and 600 MeV at COSY using the Big Karl spectrograph. The high resolution in the $\pi^+$ momentum ensured that there was an unambiguous separation of the $pp\to {\pi}^+d/\pi^+pn$ channels. Using these and earlier data, the ratio of the production cross sections could be followed through the $\Delta$ region and compared with the predictions of final state interaction theory. Deviations are strongly influenced by long-range terms in the production operator and the tensor force in the final $pn$ system. These have been investigated in a realistic $pp\to\pi^+d/\pi^+pn$ calculation that includes $S \rightleftharpoons D$ channel coupling between the final nucleons. A semi-quantitative understanding of the observed effects is achieved.

6 data tables match query

Forward differential cross section for P P --> PI+ P N for beam momenta 1640 MeV.

Forward differential cross section for P P --> PI+ P N for beam momenta 1220 MeV.

Forward differential cross section for P P --> PI+ P N for beam momenta 955 MeV.

More…

Cross Section and Transverse Single-Spin Asymmetry of $\eta$ Mesons in $p^{\uparrow}+p$ Collisions at $\sqrt{s}=200$ GeV at Forward Rapidity

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 072008, 2014.
Inspire Record 1300542 DOI 10.17182/hepdata.64267

We present a measurement of the cross section and transverse single-spin asymmetry ($A_N$) for $\eta$ mesons at large pseudorapidity from $\sqrt{s}=200$~GeV $p^{\uparrow}+p$ collisions. The measured cross section for $0.5<p_T<5.0$~GeV/$c$ and $3.0<|\eta|<3.8$ is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries $A_N$ have been measured as a function of Feynman-$x$ ($x_F$) from $0.2<|x_{F}|<0.7$, as well as transverse momentum ($p_T$) from $1.0<p_T<4.5$~GeV/$c$. The asymmetry averaged over positive $x_F$ is $\langle{A_{N}}\rangle=0.061{\pm}0.014$. The results are consistent with prior transverse single-spin measurements of forward $\eta$ and $\pi^{0}$ mesons at various energies in overlapping $x_F$ ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in $p^{\uparrow}+p$ collisions.

4 data tables match query

The measured ETA meson cross section, E*D3(SIG)/DP**3, versus PT at forward rapidity. The statistical and systematic uncertainties are type-A and type-B uncertainties respectively.

ASYM(PEAK) and ASYM(BG) for ETA mesons measured as a function of XF in the range 0.3 < ABS(XF) < 0.7 from the 4X4B triggered dataset. The values represented are the weighted mean of the South and North MPC (Muon Piston Calorimeter). The uncertainties listed are statistical only.

ASYM for ETA mesons measured as a function of XF in the range 0.2 < ABS(XF) < 0.7. Uncertainties listed are those due to the statistics, the XF uncorrelated uncertainties due to extracting the yields, and the correlated relative luminosity uncertainty.

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables match query

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

31 data tables match query

Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

More…

Spin correlation measurements for p (polarized) + p (polarized) elastic scattering at 497.5-MeV

Hoffmann, G.W. ; Barlett, M.L. ; Kielhorn, W. ; et al.
Phys.Rev.C 49 (1994) 630-632, 1994.
Inspire Record 383760 DOI 10.17182/hepdata.25964

The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.

1 data table match query

Errors include statistical and systematic uncertainties.