Measurement of the cross-sections of the reactions e+ e- ---> gamma gamma and e+ e- ---> gamma gamma gamma at LEP

The OPAL collaboration Akwawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 257 (1991) 531-540, 1991.
Inspire Record 302587 DOI 10.17182/hepdata.29464

The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.

3 data tables match query

No description provided.

No description provided.

No description provided.


Analysis of Z0 couplings to charged leptons

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 458-472, 1990.
Inspire Record 297139 DOI 10.17182/hepdata.29630

The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .

6 data tables match query

Cross sections corrected for the effects of efficiency and kinematic cuts. Errors have systematic effects folded.

Acceptance corrected cross sections. Statistical errors only.

Acceptance corrected cross sections. Statistical errors only.

More…

A Study of the Reaction $e^+ e^- \to \gamma \gamma$ at {LEP}

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 241 (1990) 133-140, 1990.
Inspire Record 294809 DOI 10.17182/hepdata.29717

The pure QED reaction e + e − → γγ has been studied at centre of mass energies around the mass of the Z 0 boson using data recorded by the OPAL detector at LEP. The results are in good agreement with the QED prediction. Lower limits on the cutoff parameters of the modified electron propagator are found to be Λ + >89 GeV and Λ. The lower limit on the mass of an excited electron is 82 GeV assuming the coupling constant λ =1. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ are set at 3.7×10 −4 , 3.9×10 −4 and 5.8×10 −4 respectively. Two events from the reaction e + e − → γγγ have been observed, consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ is set at 2.8×10 −4 . All the limits are given at 95% confidence level.

2 data tables match query

No description provided.

Data read from graph.


Intermittency in hadronic decays of the Z0

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 262 (1991) 351-361, 1991.
Inspire Record 314631 DOI 10.17182/hepdata.29397

A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.

3 data tables match query

Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.


A Study of b quark fragmentation into B0 and B+ mesons at LEP

The OPAL collaboration Alexander, G. ; Allison, J. ; Altekamp, N. ; et al.
Phys.Lett.B 364 (1995) 93-106, 1995.
Inspire Record 400812 DOI 10.17182/hepdata.48093

A study of b quark fragmentation at LEP is presented using a sample of semileptonic B decays containing a fully reconstructed charm meson. The data are compared to several theoretical models for heavy quark fragmentation; the free parameters in these models are fitted and the sensitivity of the model parameters to the rate of P-wave B meson production is studied. The mean scaled energy fraction of B 0 and B + mesons has been determined to be < x E > = 0.695 ± 0.006 ± 0.003 ± 0.007, where the errors are statistical, systematic and model dependence respectively. This result is consistent with previous, less direct measurements from inclusive leptonic B decays. Also presented is a model independent fit to the shape of the energy distribution of weakly decaying B mesons at LEP.

1 data table match query

No description provided.


A Measurement of energy correlations and a determination of alpha-s (M2 (Z0)) in e+ e- annihilations at s**(1/2) = 91-GeV

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 252 (1990) 159-169, 1990.
Inspire Record 298707 DOI 10.17182/hepdata.29525

From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.

3 data tables match query

Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.

Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.

Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.


An Improved measurement of alpha-s (M (Z0)) using energy correlations with the OPAL detector at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 276 (1992) 547-564, 1992.
Inspire Record 321657 DOI 10.17182/hepdata.29245

We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.

2 data tables match query

Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.

The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.


A Measurement of strange baryon production in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 291 (1992) 503-518, 1992.
Inspire Record 336771 DOI 10.17182/hepdata.29036

The production of the octet and decuplet baryons Λ, Ξ − , Σ (1385) ± , Ξ(1530) 0 and Ω − and the corresponding antibaryons has been measured in a sample of 485 000 hadronic Z 0 decays. Results on differential and integrated cross sections are presented. The differential cross section of Λ baryons is found to be softer than the one predicted by the Jetset and Herwig Monte Carlo generators. The measured decuplet yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is used. Comparisons of the momentum spectra for Λ and Ξ − with the predictions of an analytical QCD formula are also presented.

13 data tables match query

No description provided.

No description provided.

No description provided.

More…

A Direct observation of quark - gluon jet differences at LEP

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 265 (1991) 462-474, 1991.
Inspire Record 316872 DOI 10.17182/hepdata.48454

Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.

1 data table match query

QUARK means QUARK or QUARKBAR.


A Combined Analysis of the Hadronic and Leptonic Decays of the $\Z^0$

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 240 (1990) 497-512, 1990.
Inspire Record 294808 DOI 10.17182/hepdata.29720

We report on a measurement of the mass of the Z 0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of M z =91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γ z =2.536±0.045 GeV. The errors on M z have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γ ee =81.2±2.6 MeV, Γ μμ =82.6± 5.8 MeV, and Γ ττ =85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γ ℓ + ℓ − = 81.9±2.0 MeV. The hadronic partial width is Γ had =1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γ inv =453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.

4 data tables match query

Errors are statistical and point to point systematic luminosity error of 1 pct.

Measured values of e+ e- --> e+ e- cross section.

Corrected cross section. Corrections are for t-channel effects and loss of acollinear events near the boundary of the acceptance.

More…