Nuclear stopping in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 93 (2004) 102301, 2004.
Inspire Record 636579 DOI 10.17182/hepdata.89443

Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.

2 data tables match query

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . NaN values means no observation.

$\frac{\mathrm{d}N}{\mathrm{d}y}$ versus $y$ for $\mathrm{p}$,$\overline{\mathrm{p}}$,$\mathrm{p}-\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . The correction for the $\Lambda$ contribution is not straight forward since BRAHMS does not measure the $\Lambda$s and PHENIX and STAR only measures the $\Lambda$s at mid-rapidity! If one assumes that the mid-rapidity estimated in the paper of $$R=\frac{\Lambda-\bar{\Lambda}}{\mathrm{p}-\bar{\mathrm{p}}} = \frac{\Lambda}{\mathrm{p}} = \frac{\bar{\Lambda}}{\bar{\mathrm{p}}} = 0.93\pm 0.11(\mathrm{stat})\pm 0.25(\mathrm{syst}) $$ and the BRAHMS "acceptance factor" of $A=0.53\pm 0.05$ which includes both that only 64% decays to protons and that some are rejected by the requirement of the track to point back to the IP. The corrected $\mathrm{p}$ ($\bar{\mathrm{p}}$ or net-$\mathrm{p}$) is then : $$\left.\frac{\mathrm{d}N}{\mathrm{d}y}\right|_{\mathrm{corrected}} = \frac{\mathrm{d}N}{\mathrm{d}y}(1/(1+RA))= \frac{\mathrm{d}N}{\mathrm{d}y}\left(0.67\pm 0.05(\mathrm{stat})\pm 0.11(\mathrm{syst})\right)$$ Which can be used at all rapidities if one believes that R is constant. The fact that net-$\mathrm{K}=\mathrm{K}^{+}-\mathrm{K}^{-}$ follows net-$\mathrm{p}$ (see fx. talk by Djamel Ouerdane at QM04), seems to indicate that the net-$\Lambda$ follow the net-$\mathrm{p}$ trend and the correction is reasonable.


Charged meson rapidity distributions in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 94 (2005) 162301, 2005.
Inspire Record 647076 DOI 10.17182/hepdata.89445

We have measured rapidity densities dN/dy of pions and kaons over a broad rapidity range (-0.1 < y < 3.5) for central Au+Au collisions at sqrt(snn) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+) and 242 +/- 4 +/- 19 (K-). The systematics of the strange to non--strange meson ratios are found to track the variation of the baryo-chemical potential with rapidity and energy. Landau--Carruthers hydrodynamic is found to describe the bulk transport of the pions in the longitudinal direction.

60 data tables match query

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=-0.1-0.0$ for $0-5$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0.0-0.1$ for $0-5$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0.4-0.6$ for $0-5$% central

More…

Kaon and Pion Production in Central Au+Au Collisions at \sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 687 (2010) 36-41, 2010.
Inspire Record 836865 DOI 10.17182/hepdata.89451

Invariant pT spectra and rapidity densities covering a large rapidity range(-0.1 < y < 3.5) are presented for $\pi^{\pm}$ and $K^{\pm}$ mesons from central Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. The mid-rapidity yields of meson particles relative to their anti-particles are found to be close to unity ($\pi^-/\pi^+ \sim 1$, $K^-/K^+ \sim 0.85$) while the anti-proton to proton ratio is $\bar{p}/p \sim 0.49$. The rapidity dependence of the $\pi^-/\pi^+$ ratio is consistent with a small increase towards forward rapidities while the $K^-/K^+$ and $\bar{p}/p$ ratios show a steep decrease to $\sim$ 0.3 for kaons and 0.022 for protons at $y\sim 3$. It is observed that the kaon production relative to its own anti-particle as well as to pion production in wide rapidity and energy ranges shows an apparent universal behavior consistent with the baryo-chemical potential, as deduced from the $\bar{p}/p$ ratio, being the driving parameter.

40 data tables match query

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.2-0.0$ for $0-10$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.0-0.2$ for $0-10$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.7-0.9$ for $0-10$% central

More…

MULTI - HADRON EVENT PROPERTIES IN e+ e- ANNIHILATION AT s**(1/2) = 52-GeV to 57-GeV

The AMY collaboration Li, Y.K. ; Li, J. ; Cheng, C.P. ; et al.
Phys.Rev.D 41 (1990) 2675, 1990.
Inspire Record 283337 DOI 10.17182/hepdata.38416

We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.

22 data tables match query

Rapidity distribution with respect to the Thrust axis.

Charged particle X distribution.

Charged particle PL distribution.

More…

Excitation function of K+ and pi+ production in Au + Au reactions at 2-A-GeV to 10-A-GeV.

The E866 & E917 collaborations Ahle, L. ; Akiba, Y. ; Ashktorab, K. ; et al.
Phys.Lett.B 476 (2000) 1-8, 2000.
Inspire Record 508374 DOI 10.17182/hepdata.28038

Positive pion and kaon production from Au+Au reactions have been measured as a function of beam energy over the range 2.0-10.7~AGeV. Both the kaon and the pion production cross-sections at mid-rapidity are observed to increase steadily with beam kinetic energy. The ratio of K$^+$ to $\pi^+$ mid-rapidity yields increases from 0.0271$\pm0.0015\pm0.0014$ at 2.0~AGeV to 0.202$\pm0.005\pm0.010$ at 10.7~AGeV and is larger than the K$^+$/$\pi^+$ ratio from p+p reactions over the same beam energy region. There is no indication of an onset of any new production mechanism in heavy-ion reactions in this energy range beyond rescattering of hadrons.

2 data tables match query

The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). A single exponential function in MT was fit simultaneously to the two kaonspectra at each beam energy D2(N)/D(MT)/D(YRAP)/2/PI/MT=D(N)/D(YRAP)/2/PI/T/(T+ M(KAON))/EXP((MT-M(KAON))/T). The fits reproduce the spectra well with two free parameters, the inverse slope parameter T and the rapidity density, D(N)/D(YRAP)in that rapidity slice. The mid-rapidity range for 2, 4, 6, 8 AGeV is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV the width is ABS((YRAP-Ynn)/Ynn) < 0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only. The 1.96, 4. and 10.74 GeV are E866 data, another - E917 data.

The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). A single exponential function in MT was fit simultaneously to the two kaonspectra at each beam energy D2(N)/D(MT)/D(YRAP)/2/PI/MT=D(N)/D(YRAP)/2/PI/T/(T+ M(KAON))/EXP((MT-M(KAON))/T). The fits reproduce the spectra well with two free parameters, the inverse slope parameter T and the rapidity density, D(N)/D(YRAP)in that rapidity slice. The mid-rapidity range for 2, 4, 6, 8 AGeV is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV the width is ABS((YRAP-Ynn)/Ynn) < 0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only. The 1.96, 4. and 10.74 GeV are E866 data, another - E917 data.


Nuclear stopping and rapidity loss in Au+Au collisions at sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 677 (2009) 267-271, 2009.
Inspire Record 810481 DOI 10.17182/hepdata.89449

Transverse momentum spectra of protons and anti-protons measured in the rapidity range 0<y<3.1 from 0-10% central Au+Au collisions at sqrt{s_{NN}}=62.4 GeV are presented. The rapidity densities, dN/dy, of protons, anti-protons and net-protons N()p-N(pbar) have been deduced from the spectra over a rapidity range wide enough to observe the expected maximum net-baryon density. From mid-rapidity to y=1 the net-proton yield is roughly constant (dN/dy ~ 10),but rises to dN/dy ~25 at 2.3<y<3.1. The mean rapidity loss is 2.01 +-0.16 units from beam rapidity. The measured rapidity distributions are compared to model predictions. Systematics of net-baryon distributions and rapidity loss vs. collision energy are discussed.

16 data tables match query

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.1-0.1$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.1-0.1$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.4-0.9$

More…

Centrality dependence of charm production from single electrons measurement in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082301, 2005.
Inspire Record 660611 DOI 10.17182/hepdata.57254

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.

18 data tables match query

Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.

Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.

Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.

More…

Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables match query

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Production of charged hadrons by positive muons on deuterium and xenon at 490-GeV

The E665 collaboration Adams, M.R. ; Aderholz, M. ; Aïd, S. ; et al.
Z.Phys.C 61 (1994) 179-198, 1994.
Inspire Record 359394 DOI 10.17182/hepdata.42505

Results on the production of charged hadrons in muon-deuteron and muon-xenon interactions are presented. The data were taken with the E665 spectrometer, which was exposed to the 490 GeV muon beam of the Tevatron at Fermilab. The use of a streamer chamber as vertex detector provides nearly 4π acceptance for charged particles. The μD data are compared with the μXe data in terms of multiplicity distributions, average multiplicities, forward-backward multiplicity correlations, rapidity and transverse momentum distributions and of two-particle rapidity correlations of charged hadrons. The data cover a range of invariant hadronic massesW from 8 to 30 GeV.

6 data tables match query

Results of negative binomial function fit to the multiplicity distribution of charged hadrons in muon-deuteron scattering. DISPERSION = SQRT(1/MULT + 1/K) is this dispersion of the scaled multiplicity Z = N/MULT.

Results of negative binomial function fit to the multiplicity distribution of charged hadrons in muon-xenon scattering. DISPERSION = SQRT(1/MULT + 1/K) is this dispersion of the scaled multiplicity Z = N/MULT.

Results of negative binomial fits to charged hadron multiplicity distributions in muon-deuteron interactions for backward and forward hemispheres of the hadronic cm.

More…

Proton emission in Au+Au collisions at 6, 8, and 10.8 GeV/nucleon

Back, B.B. ; Betts, R.R. ; Chang, J. ; et al.
Phys.Rev.C 66 (2002) 054901, 2002.
Inspire Record 602292 DOI 10.17182/hepdata.25396

Transverse mass spectra of protons emitted in Au+Au collisions at beam energies of 6, 8, and 10.8 GeV/nucleon have been measured as a function of collision centrality over a rapidity range 0.5<ylab<1.5. The spectra are well reproduced by Boltzmann distributions over the measured transverse mass region, which allows for extrapolation of the data to derive the rapidity density and apparent temperature of the emitting source. The shapes of the rapidity distributions suggest significant transparency or substantial longitudinal expansion in even the most central collisions at all three beam energies. The data are analyzed within a simple thermal source plus longitudinal expansion model.

15 data tables match query

The inverse slope, mean transverse mass and rapidity density values for centrality 0 to 5 PCT for 6 GeV/nucleon collisions. Statistical errors only.

The inverse slope, mean transverse mass and rapidity density values for centrality 5 to 12 PCT for 6 GeV/nucleon collisions. Statistical errors only.

The inverse slope, mean transverse mass and rapidity density values for centrality 12 to 23 PCT for 6 GeV/nucleon collisions. Statistical errors only.

More…