Production of charged pions by 730-MeV protons from hydrogen and selected nuclei

Cochran, D.R.F. ; Dean, P.N. ; Gram, P.A.M. ; et al.
Phys.Rev.D 6 (1972) 3085-3116, 1972.
Inspire Record 73637 DOI 10.17182/hepdata.22253

An experiment was done in the external proton beam of the Berkeley 184-in. cyclotron to measure the production cross sections for pions from various target nuclei, from hydrogen to lead. The cross-section data are presented and the reaction mechanisms discussed. The hydrogen production appears to fit the one-pion-exchange model.

1 data table match query

No description provided.


Two-Charged-Particle Final States from pi-+p Interactions at 2.7 GeVc

Miller, D.H. ; Gutay, L. ; Johnson, P.B. ; et al.
Phys.Rev. 153 (1967) 1423-1442, 1967.
Inspire Record 52271 DOI 10.17182/hepdata.26636

A total of 24 360 events having two charged particles in the final state from π−+p interactions at an incident π− momentum of 2.7 GeVc have been analyzed. The final states π−π+n and π−π0p are found to be dominated by rho-meson production, and in addition, significant N*(1238) production is seen. The partial cross sections for the dominant resonant channels are σ=(pρ−)=(1.3±0.2) mb, σ(nρ0)=(2.3±0.2) mb, and σ[π−N*+(→pπ0)]=(0.5±0.2) mb. The production of the ρ− and ρ0 and the decay of the ρ− agree very well with the predictions of an absorption-modified one-pion-exchange model. The production angular distributions of the ρ0 and ρ− follow an exponential of the form Ae+Bt. The results from a least-squares fit give B(ρ−)=9.32±0.08 (GeVc)−2, B(ρ0)=10.26±0.06 (GeVc)−2. A similar analysis for the elastic-scattering events gave B(el)=7.77±0.05 (GeVc)−2. The ρ0 decay distributions are asymmetric and they have been analyzed using a simple model which includes S−P-wave interference. No clear evidence is seen for a T=0, J=0 resonance at a mass near that of the ρ. The N*(1238) resonance production is found to be in agreement with the ρ-exchange model of Stodolsky and Sakurai. Indication of other resonance production with small cross section is seen, such as A1 and A2 production in the multiple missing neutral events. The masses and widths of the ρ0 and ρ− as a function of the four-momentum transfer squared to the nucleon have been determined.

1 data table match query

No description provided.


Nonstrange Resonance Production in pi+ p Collisions at 2.35, 2.62, and 2.90 GeV/c

Alff-Steinberger, C. ; Berley, D. ;
Phys.Rev. 145 (1966) 1072, 1966.
Inspire Record 50938 DOI 10.17182/hepdata.26629

In an exposure of the Brookhaven National Laboratory 20-in. hydrogen bubble chamber to a separated π+ beam at π+ momenta of 2.35 BeV/c (center-of-mass energy E*=2.30 BeV), 2.62 BeV/c (E*=2.41 BeV), and 2.90 BeV/c (E*=2.52 BeV), we have observed production of the ω0, ρ0, and η0 mesons. The production of the ω0, ρ0, and η0 is often accompanied by simultaneous production of the N*++. The momentum transfer in ω0 and ρ0 production is characteristic of peripheral collisions and suggests a single-particle exchange for the production mechanism. The decay distributions for the ω0, ρ0, and the ρ+ demonstrate the importance of modifying the single-particle-exchange model to include absorptive effects. An upper limit on the two-π decay of the ω0 is set at 2%. The width of the η0 is found to be less than 10 MeV. Elastic-scattering distributions are presented.

1 data table match query

No description provided.


Strange-particle production in {8-BeV/c} proton-proton interactions

Firebaugh, M. ; Ascoli, G. ; Goldwasser, E.L. ; et al.
Phys.Rev. 172 (1968) 1354-1369, 1968.
Inspire Record 53978 DOI 10.17182/hepdata.26501

A systematic survey of strange-particle final states produced by 8−BeVc protons was made in the BNL 80-in. hydrogen bubble chamber. Cross sections were measured for some 33 reactions. The ratio of the cross section for the KK¯ channels to the total strange-particle cross section was measured to be 0.12 and appears to be rising in this momentum region. The total cross section for strange-particle production is estimated as 1.8±0.2 mb. Comparison is made of the data with the predictions of the one-pion-exchange model, and at least partial agreement occurs for the K+pΛ and πKNΣ final states. The KpΣ states appear to contain N*(1924)→KΣ, and the πKNΛ states all include Y*(1385) production with the π+K0pΛ state also containing N*(1236) and K*(890) production. An examination of the five- and six-body K, Λ states indicates strong Y*(1385) and N*(1236) production. Finally, all final states containing a K and a Λ show a dependence on M(K,Λ) which is well parametrized by a Breit-Wigner shape with M0=1777 MeV and Γ=345 MeV. This behavior is interpreted as being consistent with one-pion exchange as the dominant mechanism for these reactions.

1 data table match query

'1'. '2'.


Single Pion Production in pi- p Collisions at 2.14 GeV/c

Hagopian, V. ; Pan, Y.L. ;
Phys.Rev. 152 (1966) 1183, 1966.
Inspire Record 50984 DOI 10.17182/hepdata.26635

A bubble-chamber experiment in which the reaction π−+p→π+π+N was studied at a beam momentum of 2.14 BeV/c yielded 1533 and 2234 events of the final states π−π0p and π−π+n, respectively. These events are dominated by the formation of the ρ resonance, which is produced mostly in the forward direction. Both the production and decay angular distributions of the ρ− agree very well with the predictions of the one-pion exchange theory modified by absorption effects. The decay angular distribution of the ρ0 shows the well-known forward-backward asymmetry. This effect is interpretable as the result of the interference between the ρ0 and an isospin-zero s-wave π−π resonance. The production of the ρ0, in addition to its forward peak, shows a weak backward peak. Partial cross sections of various final states are also presented.

1 data table match query

No description provided.


Single and Multiple Pion Production in pi+n and pi-p Interactions at 1.7 GeV/c

Bacon, T.C. ; Fickinger, W.J. ; Hill, D.G. ; et al.
Phys.Rev. 157 (1967) 1263-1278, 1967.
Inspire Record 52416 DOI 10.17182/hepdata.26582

Meson production in π−p and π+n interactions at 1.7 GeV/c has been studied in two bubble-chamber exposures. Combined results are presented with emphasis on single-pion production (4300 events) which is dominated by the formation of the ρ0 meson in peripheral interactions, and on double-pion production (1100 events) which shows strong formation of the ω meson. These data are compared with the predictions of particle-exchange models, including absorption, and the effects of competing channels are discussed. Evidence for a two-pion decay mode of the ω is examined quantitatively. Processes with higher meson multiplicities are described.

1 data table match query

No description provided.


Interactions of pi+ Mesons with Protons at 2.08 BeVc

James, Frederick E. ; Kraybill, Henry L. ;
Phys.Rev. 142 (1966) 896-912, 1966.
Inspire Record 50875 DOI 10.17182/hepdata.26717

Interactions of 2.08−BeVc positive pions with protons have been studied using the 20-in. hydrogen bubble chamber and the alternating gradient synchrotron at Brookhaven National Laboratory. Using 3000 elastic and 8000 inelastic events, the partial cross sections for elastic scattering and for meson production have been measured. The ρ+, ρ0, ω0, and η0 resonances are produced strongly and emerge predominantly in the forward direction in the center-of-mass system, suggesting a peripheral mechanism for their production. The possibility of explaining these reactions by specific particle-exchange models is investigated. More than 75% of the ρ0, ω0, and η0 are produced with the N33* (1238) isobar. The N* (1688) is produced in about one-third of the π+π+N final states. Cross sections for production of ρ+p, π+pω, N33*ω, π+pη, N33*η, π+pρ0, N33*ρ0, N15*π+, and N33*π0, are given. A1, B, φ, and X mesons are not observed.

1 data table match query

No description provided.


pi-p Two-Prong Interactions at 4.16 GeV/c

Eisner, R.L. ; Johnson, P.B. ; Klein, P.R. ; et al.
Phys.Rev. 164 (1967) 1699-1710, 1967.
Inspire Record 52292 DOI 10.17182/hepdata.26569

An analysis of π−p two-prong interactions at 4.16 GeV/c is presented. The total two-prong cross section is 19.11±0.40 mb, based on 33 672 events. The elastic-scattering differential cross section shows an exponential behavior, Kexp(−AΔ2). With A=7.36±0.14 GeV−2, the "absorption parameters" are derived as C+=0.846±0.017 and γ+=0.040±0.001. The final-state π−π0p exhibits a strong ρ−, and the π−π+n a strong ρ0 and f0. The partial cross sections for the dominant resonant channels pρ−, π−Δ+(1236) (→pπ0), ρ0n, and f0n are 0.59±0.03, 0.17±0.01, 1.15±0.05, and 0.53±0.06 mb, respectively. The ρ− production and decay angular distributions do not agree with the predictions of the absorption-modified one-pion-exchange model. However, an inclusion of the contribution from ω exchange adequately accounts for the discrepancy. The ρ0 asymmetry is interpreted as a result of an interference of the resonant P wave and isospin-zero S wave, and the corresponding spin-density matrix elements are obtained. In the final state π−p+neutrals, a clear peak for the η meson and some evidence for the ω meson are seen.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////EVENT NORMALIZATION).


Proton-Proton Collisions at 4.2 Bev

Blue, M.H. ; Lord, J.J. ; Parks, J.G. ; et al.
Phys.Rev. 125 (1962) 1386-1393, 1962.
Inspire Record 944984 DOI 10.17182/hepdata.26806

Interactions between 4.15-Bev protons and the free hydrogen nuclei in nuclear emulsion are examined. The total elastic cross section from 27 events was determined to be 11.0±2.6 mb. On the basis of 113 interactions the total inelastic cross section was found to be 28.1±3.1 mb. The partial cross sections corresponding to inelastic collisions having two, four, six, and eight secondary particles were found to be respectively 16.3±2.4, 11.5±1.8, 0.2±0.1, and 0.1±0.1 mb. While the total inelastic cross section varies slowly with energy, the partial inelastic cross sections were found to be strongly energy dependent. The observed angular distribution of elastically scattered protons in the center-of-mass system was sharply peaked in the forward and backward directions, in fair agreement with calculations based on a simple optical model applicable for energies between 2 and 10 Bev. Particles produced in inelastic collisions were identified as pions or protons by measurements of energy loss and multiple scattering. For those particles identified, center-of-mass system distributions of energy, angle, and transverse momentum are presented.

1 data table match query

'ALL'.


Nucleon and Nuclear Cross Sections for Positive Pions and Protons above 1.4 Bev/c

Longo, Michael J. ; Moyer, Burton J. ;
Phys.Rev. 125 (1962) 701-713, 1962.
Inspire Record 46829 DOI 10.17182/hepdata.26791

Total (π+, p) and (p, p) cross sections in the momentum range 1.4 to 4.0 Bev/c are presented. These measurements, with an accuracy of approximately 2%, were made at the Berkeley Bevatron by using counter techniques. Pions were distinguished from protons by means of a gas-filled Čerenkov counter. The (π+, p) total cross section was found to be almost constant above 2.0 Bev/c at a value near 29 mb. The (p, p) cross section decreases gradually from 47.5 mb to 41.7 mb over the momentum range covered. Transmission measurements of π+-nucleus and p-nucleus cross sections in both good and poor geometry were made at 3.0 Bev/c. The results are compared with the predictions of the optical model. In contrast to most previous work at high energies, an essentially exact solution of the wave equation for a potential well with a diffuse edge was used. The values of the imaginary part of the optical potential that best fit the experimental data are in good agreement with the predicted values. No strong conclusion regarding the real part of the potential was possible. Absorption and total elastic scattering cross sections for Be, C, Al, and Cu are presented. The total elastic scattering cross sections from this experiment disagree with Wikner's for π−-nucleus scattering.

1 data table match query

No description provided.


p-p Interactions at 2 Bev. 2. Multiple-Pion Production

Pickup, E. ; Robinson, D.K. ; Salant, E.O. ;
Phys.Rev. 125 (1962) 2091-2101, 1962.
Inspire Record 47226 DOI 10.17182/hepdata.26793

Analyses have been made for 871 four-prong events and 463 two-prong events corresponding to multiple pion production, resulting from p−p interactions at 2 Bev in the BNL 20-in. hydrogen bubble chamber. Cross sections have been obtained for all the observable double and triple pion production processes; the branching ratios predicted by the extended isobar model are shown to be in fair agreement with the data, but there are significant differences. The c.m. momentum distributions are also in fair agreement with the predictions of the model, although there are ambiguities in the interpretation. The pion-nucleon Q values give clear evidence for the importance of the (32, 32) resonant state in multiple pion production, but consideration of this state alone does not provide an explanation of the features of double pion production. Some contribution from another state, possibly the I=12 nucleon isobar, is necessary. In double production, the c.m. angular distributions of the nucleons show backward-forward peaking suggestive of a one-pion exchange process. The angular distributions of the nucleons from triple production are almost isotropic.

1 data table match query

No description provided.


p-p Interactions at 2 Bev. 1. Single-Pion Production

Fickinger, W.J. ; Pickup, E. ; Robinson, D.K. ; et al.
Phys.Rev. 125 (1962) 2082-2090, 1962.
Inspire Record 46669 DOI 10.17182/hepdata.26851

3600 two-pronged events, obtained in p−p interactions at 2 Bev in the BNL 20-in. hydrogen bubble chamber, have been analyzed. Cross sections have been measured for elastic scattering, for the two modes of single-pion production, p+p→p+n+π+, p+p→p+p+π0, and for strange-particle production. The branching ratio for the two one-pion production reactions is σ(pnπ+)σ(ppπ0)=4.17±0.25. Momentum distributions and Q values indicate that single-pion production proceeds almost entirely through the (32, 32) resonant state. The data have been considered in terms of the extended isobar model and also a one-pion exchange model for production. The branching ratio and momentum distributions can be explained by including a small effect from the I=12 resonant state in addition to the dominant I=32 resonance. The c.m. angular distribution of the nucleons in single-pion production shows very marked backward-forward peaking indicating a one-pion exchange mechanism. Absolute differential cross sections as a function of laboratory kinetic energy have been calculated from Selleri's equation for the pnπ+ reaction. There is good agreement with the data for low four-momentum transfers [q2<0.15(Bev/c)2], but for higher momentum transfers the theoretical cross sections are larger than the experimental cross sections.

1 data table match query

No description provided.


p-p Interactions at 3 Bev

Cester, R. ; Hoang, T.F. ; Kernan, A. ;
Phys.Rev. 103 (1956) 1443-1449, 1956.
Inspire Record 945004 DOI 10.17182/hepdata.26958

Interactions initiated by 3-Bev protons of the Brookhaven Cosmotron were studied by photoemulsion technique. With appropriate criteria, 115 events are attributed to interactions of the incident beam protons with hydrogen nuclei (∼55%) and with bound protons of other nuclei (∼45%). A detailed analysis allowed the subdivision of the 115 events in categories, according to the number of π mesons (N>~0) produced in the collision. The ratio of elastic scattering to the total number of events was estimated to be σelσtotal=0.20−0.07+0.04. The observed cross section for pure elastic scattering is σel=8.9±1.0 mb. The percentages of single, double, triple, and quadruple π-meson production are respectively: 34−20+22; 35.6−23+20; 9.6−4+6; ∼1.0+3.5. Among the 20 most probable cases of single π-meson production—the estimated ratio of π+ to π0 is σπ+σπ0=5.3−1.4+0.3. The experimental results are not in agreement with the Fermi statistical-model theory (in particular the lower limit for the experimental ratio of triple to single production is given by σ3σ1>∼110 in contrast with the predicted ratio σ3σ1=167) but are not inconsistent with the Peaslee excited-state-model theory.

1 data table match query

No description provided.


Multiple Meson Production in Proton-Proton Collisions at 2.85 Bev

Hart, E.L. ; Louttit, R.I. ; Luers, D. ; et al.
Phys.Rev. 126 (1962) 747-756, 1962.
Inspire Record 47769 DOI 10.17182/hepdata.26782

Measurements have been made on 753 four-prong events obtained by exposing the Brookhaven National Laboratory 20-in. liquid hydrogen bubble chamber to 2.85-Bev protons. The partial cross sections observed for multiple meson production reactions are: pp+−(p+p→p+p+π++π−), 2.67±0.13; pn++−, 1.15±0.09; pp+−0, 0.74±0.07; d++−, 0.06±0.02; four or more meson production, 0.04±0.02, all in mb. Production of two mesons appears to occur mainly in peripheral collisions with relatively little momentum transfer. In cases of three-meson production, however, the protons are typically deflected at large angles and are more strongly degraded in energy. The 32, 32 pion-nucleon resonance dominates the interaction; there is some indication that one or both of the T=12, pion-nucleon resonances also play a part. The recently discovered resonance in a T=0, three-pion state appears to be present in the pp+−0 reaction. Results are compared with the predictions of the isobaric nucleon model of Sternheimer and Lindenbaum, and with the statistical model of Cerulus and Hagedorn. The cross section for the reaction π0+p→π++π−+p is derived using an expression from the one-pion exchange model of Drell.

1 data table match query

No description provided.


Proton-Proton Interactions at 2.75 Bev

Block, M.M. ; Harth, E.M. ; Cocconi, V.T. ; et al.
Phys.Rev. 103 (1956) 1484-1489, 1956.
Inspire Record 945002 DOI 10.17182/hepdata.26908

212 interactions of 2.75-Bev protons have been observed in a hydrogen-filled diffusion cloud chamber. The data indicate an elastic cross section of 15 millibarns, with about 9 millibarns cross section for single pion production, 13 millibarns for double, and 4 for triple. There is one example of quadruple pion production. One definite example of the production of heavy unstable particles was observed, and two doubtful cases. The median elastic scattering angle was 19° in the c.m. system. Angle and momentum distributions for inelastic events are consistent with those observed at lower energies.

1 data table match query

'1'. '2'. '1'. '3'.


Total p-p and 'p-n' Cross Sections at Cosmotron Energies

Chen, Francis F. ; Leavitt, Christopher P. ; Shapiro, Anatole M. ;
Phys.Rev. 103 (1956) 211-225, 1956.
Inspire Record 46809 DOI 10.17182/hepdata.828

The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.

4 data tables match query

No description provided.

No description provided.

More…

Elastic scattering, pion production, and annihilation into pions in antiproton-proton interactions at 5.7 GeV/c

Böckmann, K. ; Nellen, B. ; Paul, E. ; et al.
Nuovo Cim.A 42 (1966) 954-996, 1966.
Inspire Record 1185317 DOI 10.17182/hepdata.1061

An extensive investigation of antiproton-proton interactions at 5.7 GeV/c without strange-particle production was carried out using a hydrogen bubble chamber. Cross-sections for different channels are given and discussed. The reliability of the analysis was checked using artificially generated events. The cross-sections for elastic scattering, for all processes involving annihilation, and for all other inelastic processes are respectively σel=(16.3±0.6)mb,σannlbil=(22.5±2.0)mb, σinel=(24.8±2.0)mb. TheN * 1:38 is present both in the single and multiple pion production channels. For the reaction MediaObjects/11539_2007_Article_BF02720569_f1.jpg a cross-section of (1.05±0.21) mb was obtained. Cross-sections forN * 1238 production in other channels are also given. Some indication of the presence ofI=1/2 isobars was found in the nucleon-pion and the nucleon-two-pion systems. The inelastic nonannihilation reactions were found to be strongly peripheral. The one-pion exchange model including either a form factor or corrections for absorption was applied to the reaction MediaObjects/11539_2007_Article_BF02720569_f2.jpg . Neither version of the model could correctly account for all features of the reaction. The average number of pions in the annihilation was found to be 7.3±0.6. The presence of an asymmetry in the angular distribution of the charged pions was confirmed at this energy; it is due mostly to high-energy pions. The production of ρ and ω mesons was observed in various annihilation channels. Rates of up to 80% for ρ production and up to 15% for ω production were obtained by fitting phase-space and Breit-Wigner curves to the effective-mass distributions of different channels.

5 data tables match query

No description provided.

More…

No description provided.

No description provided.

No description provided.

More…

A bubble chamber study of proton-proton interactions at 4 GeV/c Part I—Elastic scattering, single-pion and deuteron production

Ooletti, S. ; Kidd, J. ; Mandelli, L. ; et al.
Nuovo Cim.A 49 (1967) 479-498, 1967.
Inspire Record 1185329 DOI 10.17182/hepdata.981

Elastic scattering, single-pion and deuteron production have been investigated. The cross-section for elastic scattering is σelastic = (13.5±0.3) mb. The angular distribution has been fitted to dσ/d|t|=(dσ/d|t|)0 e −bt in the region of low values oft. The best fit givesb=(6.7±0.5) (GeV/c)−2 and (dσ/d|t|)0=(91±5) mb(GeV/c)−2. The cross-sections for ppπ0, pnπ+ reactions are respectively (2.6±0.3) mb and (9.7±0.4) mb. These reactions are dominated by the (3/2, 3/2) nucleonpion isobar production and by forward backward collimation of the nucleons. The production rates for the isobars ++1238 , +1238 , +1500 have been estimated, taking into account the experimental peripheral behaviour of the interaction. In the pnπ+ reaction they are (50±2)%; (10±3)%; (4±3)%. In the ppπ+ reaction the production of ++1238 is estimated to be (45±10)%. The dπ+ and dπ+π+π- reaction cross-sections are respectively (0.03±0.01) mb, and (0.04±0.01) mb.

3 data tables match query

No description provided.

No description provided.

No description provided.


Elastic n-p charge-exchange scattering at 8 GeV/c

Manning, G. ; Parham, A.G. ; Jafar, J.D. ; et al.
Nuovo Cim.A 41 (1966) 167-188, 1966.
Inspire Record 1185251 DOI 10.17182/hepdata.1062

The differential cross-section for elastic charge-exchange scattering of neutrons on protons has been measured at 8 GeV/c over forward laboratory scattering angles (0÷90) mrad (square of four-momentum transfer 0<−t<0.5 (GeV/c)2). The method utilized acoustic spark chambers and about 1900 elastic-scattering events were analysed. A value of (dσ/dΩ)lab=(20±6) mb/sr (dσ/dt=(0.93±0.28) mb/(GeV/c)2) was obtained for the forward differential cross-section and an estimated (0.06±0.03) mb for the elastic charge exchange cross-section. Both cross-sections show the decreased values expected from Pomeranchuk’s second theorem (1) when compared with results at lower energies (2). Further comparison shows that the narrow forward peak in the distribution of dσ/dt previously observed for −t<0.05, is still present at 8 GeV/c, varying in shape only slowly, if at all, with energy. For −t>0.1 however, energy dependence is apparent. The results also suggest that the interaction is spin-dependent and/or that the real parts of the scattering amplitudes in the isospin states 0 and 1 are different. Comparisons with the theoretical predictions show good agreement with the value of forward cross-section given by the Regge pole approach ofAhmadzadeh (3). The model ofRingland andPhillips (4) for single-pion exchange with absorption agrees with our results for −t<0.01 but a predicted secondary peak at −t∼0.08 is not observed.

3 data tables match query

'2'. '3'.

'2'. '3'.

No description provided.


pi+ proton, pi- proton and pp elastic scattering at 8.5, 12.4 and 18.4 GeV/c

Harting, D. ; Blackall, P. ; Elsner, B. ; et al.
Nuovo Cim. 38 (1965) 60, 1965.
Inspire Record 49759 DOI 10.17182/hepdata.1110

Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.

18 data tables match query

'1'. '2'. '3'. '4'.

More…

Passive scalar fluctuations in intermittent turbulence

Crisanti, A. ; Falcioni, M. ; Paladin, G. ; et al.
EPL 14 (1991) 541-546, 1991.
Inspire Record 314520 DOI 10.17182/hepdata.857

We discuss how the spatial intermittency of energy dissipation in 3D fully developed turbulence affects the small-scale statistics of passive scalars. We relate the passive-scalar behaviour to the diffusion properties of particle pairs in turbulent fluids. We thus find the intermittency correction to the -5/3 Obukhov-Corrsin law for the power spectrum of a passive scalar at wavenumber k where molecular diffusion and viscosity play a negligible role (inertial convective subrange). This correction is positive at difference with the negative correction to the -5/3 Kolmogorov law for the energy spectrum. We finally show that the structure functions of passive scalars have scaling exponents linear in the moment order, even in the framework of multifractal models.

3 data tables match query

No description provided.


Antiproton-Proton Cross Sections at 1.0, 1.25, and 2.0 Bev

Armenteros, Rafael ; Coombes, Charles A. ; Cork, Bruce ; et al.
Phys.Rev. 119 (1960) 2068-2073, 1960.
Inspire Record 46744 DOI 10.17182/hepdata.813

The interaction of 1.0-, 1.25-, and 2.0-Bev antiprotons with protons has been studied with the aid of a 4π solid-angle scintillation-counter detector system. The measured total cross sections at the above energies are 100, 89, and 80 mb, respectively. At each energy, the charge-exchange cross section is approximately 5 mb. The total elastic cross sections are 33, 28, and 25 mb, respectively, at the three energies. The angular distribution of elastic scattering has been fitted with a simple optical-model calculation.

3 data tables match query

No description provided.

No description provided.

No description provided.


Pi+ p elastic scattering data between 1820- and 2090-mev center-of-mass energy

Kalmus, G.E. ; Michael, W. ; Birge, R.W. ; et al.
Phys.Rev.D 4 (1971) 676-683, 1971.
Inspire Record 67772 DOI 10.17182/hepdata.3686

Total and differential elastic cross-section data are presented at eight incident π+ momenta: 1.28, 1.34, 1.40, 1.43, 1.55, 1.68, 1.77, and 1.84 GeVc. These data were obtained from a hydrogen-bubble-chamber exposure at the Bevatron, and contain more than 65 000 events. This represents more than 1½ times the world's data hitherto available in this energy region.

9 data tables match query

No description provided.

No description provided.

No description provided.

More…

MEASUREMENT OF THE muon-neutrino CHARGED CURRENT CROSS-SECTION

Baker, N.J. ; Connolly, P.L. ; Kahn, S.A. ; et al.
Phys.Rev.Lett. 51 (1983) 735-738, 1983.
Inspire Record 183068 DOI 10.17182/hepdata.20488

The Fermilab 15-ft bubble chamber, filled with a heavy neon-hydrogen mix, was exposed to a narrow-band νμ beam. Based on the observation of 830 charged-current νμ interactions, the cross section was found consistent with a linear rise with the neutrino energy in the interval 10 GeV<~Eν≲240 GeV. The average slope was determined to be σνEν=(0.62±0.05)×10−38 cm2 GeV−1.

2 data tables match query

Measured charged current total cross section.

No description provided.