Search for high mass narrow resonances in virtual photon photon interactions

The TPC / TWO GAMMA collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 3245-3248, 1986.
Inspire Record 239032 DOI 10.17182/hepdata.20201

We report on the first search with virtual photon-photon collisions for narrow, neutral resonances with even C parity in the mass range 4.5<W<19 GeV. The data were obtained via the process e+e−→e+e−γ*γ*→e e−+R with both the scattered e+ and e− detected. We find upper limits (95% confidence level) for the partial decay width of a resonance into two photons, ranging from 50 keV at W=4.5 GeV to 10 MeV at W=19 GeV. These limits constrain theoretical models involving neutral composite bosons.

1 data table match query

No description provided.


MEASUREMENT OF THE INCLUSIVE BRANCHING FRACTION tau- ---> tau-neutrino pi- pi0 NEUTRAL MESON(S)

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 1836, 1986.
Inspire Record 233422 DOI 10.17182/hepdata.38106

We measure an inclusive branching fraction of (13.9 ± 2.0−2.2+1.9)% for the decay τ−→ντπ−π0+nh0(n>~1), where h0 is a π0 or an η. The data sample, obtained with the time-projection-chamber detector facility at the SLAC e+e− storage ring PEP, corresponds to an integrated luminosity of 72 pb−1 at 29 GeV center-of-mass energy. The measured branching fraction is somewhat greater than the theoretical prediction and, with errors taken into account, could resolve the present difference between the inclusive and the sum of the exclusive τ± branching fractions into one charged prong.

2 data tables match query

No description provided.

No description provided.


Search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 012008, 2015.
Inspire Record 1366025 DOI 10.17182/hepdata.73692

Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.

1 data table match query

Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.


Measurement of the cross-sections of the reactions e+ e- ---> gamma gamma and e+ e- ---> gamma gamma gamma at LEP

The OPAL collaboration Akwawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 257 (1991) 531-540, 1991.
Inspire Record 302587 DOI 10.17182/hepdata.29464

The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.

3 data tables match query

No description provided.

No description provided.

No description provided.


Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables match query

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

Evidence for $e^+e^-\to\gamma\chi_{c1, 2}$ at center-of-mass energies from 4.009 to 4.360 GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Chin.Phys.C 39 (2015) 041001, 2015.
Inspire Record 1329785 DOI 10.17182/hepdata.72880

Using data samples collected at center-of-mass energies of $\sqrt{s}$ = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process $e^+e^-\to\gamma\chi_{cJ}$ $(J = 0, 1, 2)$ and find evidence for $e^+e^-\to\gamma\chi_{c1}$ and $e^+e^-\to\gamma\chi_{c2}$ with statistical significances of 3.0$\sigma$ and 3.4$\sigma$, respectively. The Born cross sections $\sigma^{B}(e^+e^-\to\gamma\chi_{cJ})$, as well as their upper limits at the 90% confidence level are determined at each center-of-mass energy.

3 data tables match query

The results on $e^+e^-\to\gamma\chi_{c0}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points. Numbers taken from journal version: some slight differences with respect to arXiv:1411.6336v1 in last two columns.

The results on $e^+e^-\to\gamma\chi_{c1}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points.

The results on $e^+e^-\to\gamma\chi_{c2}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points.


Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 04 (2022) 048, 2022.
Inspire Record 1972089 DOI 10.17182/hepdata.114361

A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.

7 data tables match query

Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.

More…

Study of Dynamics of $D^0 \to K^- e^+ \nu_{e}$ and $D^0\to\pi^- e^+ \nu_{e}$ Decays

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 072012, 2015.
Inspire Record 1391138 DOI 10.17182/hepdata.74726

In an analysis of a 2.92~fb$^{-1}$ data sample taken at 3.773~GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions to be $\mathcal B(D^0 \to K^-e^+\nu_e)=(3.505\pm 0.014 \pm 0.033)\%$ and $\mathcal B(D^0 \to \pi^-e^+\nu_e)=(0.295\pm 0.004\pm 0.003)\%$. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the CKM matrix element $f_{+}^K(0)|V_{cs}|=0.7172\pm0.0025\pm 0.0035$ and $f_{+}^{\pi}(0)|V_{cd}|=0.1435\pm0.0018\pm 0.0009$. Combining these products with the values of $|V_{cs(d)}|$ from the SM constraint fit, we extract the hadronic form factors $f^K_+(0) = 0.7368\pm0.0026\pm 0.0036$ and $f^\pi_+(0) = 0.6372\pm0.0080\pm 0.0044$, and their ratio $f_+^{\pi}(0)/f_+^{K}(0)=0.8649\pm 0.0112\pm 0.0073$. These form factors and their ratio are used to test unquenched Lattice QCD calculations of the form factors and a light cone sum rule (LCSR) calculation of their ratio. The measured value of $f_+^{K(\pi)}(0) |V_{cs(d)}|$ and the lattice QCD value for $f^{K(\pi)}_+(0)$ are used to extract values of the CKM matrix elements of $|V_{cs}|=0.9601 \pm 0.0033 \pm 0.0047 \pm 0.0239$ and $|V_{cd}|=0.2155 \pm 0.0027 \pm 0.0014 \pm 0.0094$, where the third errors are due to the uncertainties in lattice QCD calculations of the form factors. Using the LCSR value for $f_+^\pi(0)/f_+^K(0)$, we determine the ratio $|V_{cd}|/|V_{cs}|=0.238\pm 0.004\pm 0.002\pm 0.011$, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.

2 data tables match query

Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to K^-e^+\nu_e$ decays.

Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to \pi^-e^+\nu_e$ decays.


Search for new particles decaying to a jet and an emerging jet

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2019) 179, 2019.
Inspire Record 1700173 DOI 10.17182/hepdata.88380

A search is performed for events consistent with the pair production of a new heavy particle that acts as a mediator between a dark sector and normal matter, and that decays to a light quark and a new fermion called a dark quark. The search is based on data corresponding to an integrated luminosity of 16.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC in 2016. The dark quark is charged only under a new quantum-chromodynamics-like force, and forms an "emerging jet" via a parton shower, containing long-lived dark hadrons that give rise to displaced vertices when decaying to standard model hadrons. The data are consistent with the expectation from standard model processes. Limits are set at 95% confidence level excluding dark pion decay lengths between 5 and 225 mm for dark mediators with masses between 400 and 1250 GeV. Decay lengths smaller than 5 mm and greater than 225 mm are also excluded in the lower part of this mass range. The dependence of the limit on the dark pion mass is weak for masses between 1 and 10 GeV. This analysis is the first dedicated search for the pair production of a new particle that decays to a jet and an emerging jet.

10 data tables match query

Distributions of $\langle IP_{\mathrm{2D}}\rangle$ for background (black) and for signals with a mediator mass of 1 TeV and a dark pion proper decay length of 25 mm, for various dark pion masses.

Distributions of $\alpha_\mathrm{3D}$ for background (black) and for signals with a mediator mass of 1 TeV and a dark pion mass of 5 GeV for dark pion proper decay lengths ranging from 1 to 300 mm.

The signal acceptance A, defined as the fraction of simulated signal events passing the selection criteria, for models with a dark pion mass $m_{\pi_\mathrm{DK}}$ of 5 GeV as a function of the mediator mass $m_{\mathrm{X_{DK}}}$ and the dark pion proper decay length $c\tau_{\pi_\mathrm{DK}}$. The corresponding selection set number for each model is indicated as text on the plot.

More…

Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 233, 2023.
Inspire Record 2072831 DOI 10.17182/hepdata.127896

Results are presented from a search for the Higgs boson decay H $\to$ Z$\gamma$, where Z $\to$$\ell^+\ell^-$ with $\ell$ = e or $\mu$. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength $\mu$, defined as the product of the cross section and the branching fraction [$\sigma($pp $\to$ H$)\mathcal{B}($H $\to$ Z$\gamma)$] relative to the standard model prediction, is extracted from a simultaneous fit to the $\ell^+\ell^-\gamma$ invariant mass distributions in all categories and is found to be $\mu$ = 2.4 $\pm$ 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to $\sigma($pp $\to$ H$)\mathcal{B}($H $\to$ Z$\gamma)$ = 0.21 $\pm$ 0.08 pb. The observed (expected) upper limit at 95% confidence level on $\mu$ is 4.1 (1.8). The ratio of branching fractions $\mathcal{B}($H $\to$ Z$\gamma) / \mathcal{B}($H $\to$ $\gamma\gamma)$ is measured to be 1.5 $^{+0.7}_{-0.6}$, which agrees with the standard model prediction of 0.69 $\pm$ 0.04 at the 1.5 standard deviation level.

12 data tables match query

The $\mathcal{D}_{\mathrm{VBF}}$ distributions for signal, simulated background, and data. The $\mathcal{D}_{\mathrm{VBF}}$ distribution includes only dijet-tagged events. The sum of contributions from all signal production mechanisms is shown by the blue line, while the contribution from only the VBF mechanism is shown by the red line. The uncertainty band incorporates all statistical and systematic uncertainties in the expected background. The dashed lines indicate the boundaries for dijet-tagged categories.

The $\mathcal{D}_{\mathrm{kin}}$ distributions for signal, simulated background, and data. The $\mathcal{D}_{\mathrm{kin}}$ distribution includes only untagged events. The sum of contributions from all signal production mechanisms is shown by the blue line. The uncertainty band incorporates all statistical and systematic uncertainties in the expected background. The dashed lines indicate the boundaries for untagged categories. The gray shaded region in the $\mathcal{D}_{\mathrm{kin}}$ distribution is excluded from the analysis.

Fits to the $m_{\ell^+\ell^-\gamma}$ data distribution in the lepton-tagged categories. In the upper panel, the red solid line shows the result of a signal-plus-background fit to the given category. The red dashed line shows the background component of the fit. The green and yellow bands represent the 68 and 95% CL uncertainties in the fit. Also plotted is the expected SM signal, scaled by a factor of 10. In the lower panel, the data minus the background component of the fit is shown.

More…