Nuclear modification factors for hadrons at forward and backward rapidities in deuteron gold collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082302, 2005.
Inspire Record 665543 DOI 10.17182/hepdata.141362

We report on charged hadron production in deuteron-gold reactions at sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 < eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 < eta < -1.4, referred to as backward rapidity, and a transverse momentum range p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold collision centrality classes. We observe a suppression relative to binary collision scaling at forward rapidity, sensitive to low momentum fraction (x) partons in the gold nucleus, and an enhancement at backward rapidity, sensitive to high momentum fraction partons in the gold nucleus.

4 data tables match query

$R_{cp}$ as a function of $p_T$ for Punch-Through Hadrons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

$R_{cp}$ as a function of $p_T$ for Hadron Decay Muons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

$R_{cp}$ as a function of $\eta$ for 1.5 < $p_T$ < 4.0 GeV/$c$ for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

More…

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

23 data tables match query

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 2360 GeV.

More…

Two-particle Bose-Einstein correlations in $pp$ collisions at $\mathbf {\sqrt{s} =}$ 0.9 and 7 TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 466, 2015.
Inspire Record 1346844 DOI 10.17182/hepdata.70016

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

22 data tables match query

Systematic uncertainties on $\lambda$ and $R$ for the exponential fit of the two-particle double-ratio correlation function $R_{2}(Q)$ in the full kinematic region at $\sqrt{s} = 0.9$ and $7\ TeV$ for minimum-bias and high-multiplicity (HM) events, $n_{ch} \ge 2$ and $n_{ch} \ge 150$, respectively.

Results of fitting the multiplicity, $n_{ch}$, dependence of the BEC parameters $R$ and $\lambda$ with different functional forms for $\sqrt{s} = 0.9$ and $7\ TeV$. The $n_{ch}$ fit of $R(n_{ch})$ is applied to $7\ TeV$ minimum-bias events at $n_{ch} \le 55$ and to $0.9\ TeV$ minimum-bias events. The constant fit of $R(n_{ch} )$ is applied to $7\ TeV$ minimum-bias events for $n_{ch} > 55$ and to $7\ TeV$ high-multiplicity events. The exponential fit of $\lambda(n_{ch})$ is applied to $7\ TeV$ minimum-bias and high-multiplicity events.The error represent the quadratic sum of the statistical and systematic uncertainties.

Results of fitting the transverse momentum of the pair, $k_{T}$, dependence of the BEC parameters $R$ and $\lambda$ with the exponential fitting function for $\sqrt{s} = 0.9$ and $7\ TeV$. The error represent the quadratic sum of the statistical and systematic uncertainties.

More…

Measurement of inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 467 (1999) 137-146, 1999.
Inspire Record 505281 DOI 10.17182/hepdata.28070

Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $&lt; p_{T}^{\mathrm{D^*}} &lt; 5 $ GeV and $\mathrm{|\eta^{D^*}|} &lt; 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.

3 data tables match query

The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.

The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.

Integrated cross section in the visible kinematic region.


Nuclear-modification factor of charged hadrons at forward and backward rapidity in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 101 (2020) 034910, 2020.
Inspire Record 1741109 DOI 10.17182/hepdata.106658

The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<\eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<\eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.

11 data tables match query

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Al 0%-100% centrality.

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Au 0%-100% centrality.

RpA of charged hadrons as a function of eta at forward and backward rapidity in p+Al and p+Au 0%-100% centrality.

More…

Direct Photon Production in $\bar{p} p$ Collisions at $\sqrt{s}=630$-{GeV}

The UA2 collaboration Ansari, R. ; Bagnaia, P. ; Banner, M. ; et al.
Z.Phys.C 41 (1988) 395, 1988.
Inspire Record 264998 DOI 10.17182/hepdata.15558

A measurement of the direct production of photons with high transverse momentum from\(\bar pp\) collisions at\(\sqrt s= 630\) GeV is presented. The structure of events containing a high transverse momentum photon is studied. The results support predictions from QCD theory.

5 data tables match query

The last data point is an average over the interval 60-100 GeV in which 5 events are found.

No description provided.

No description provided.

More…

Elliptic flow for $\phi$ mesons and (anti)deuterons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 99 (2007) 052301, 2007.
Inspire Record 746499 DOI 10.17182/hepdata.141340

Differential elliptic flow (v_2) for phi mesons and (anti)deuterons (d^bar)d is measured for Au+Au collisions at sqrt(s_NN) = 200 GeV. The v_2 for phi mesons follows the trend of lighter pi^+/- and K^+/- mesons, suggesting that ordinary hadrons interacting with standard hadronic cross sections are not the primary driver for elliptic flow development. The v_2 values for (d^bar)d suggest that elliptic flow is additive for composite particles. This further validation of the universal scaling of v_2 per constituent quark for baryons and mesons suggests that partonic collectivity dominates the transverse expansion dynamics.

21 data tables match query

$m_{inv}$ distributions for foreground and background $K^+ K^-$ pairs for 20-60% central Au+Au collisions.

$m_{inv}$ distributions

$<cos(2(\varphi^{pair}-\Phi_2))>$ vs. $m_{inv}$.

More…

Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 112 (2014) 252301, 2014.
Inspire Record 1256626 DOI 10.17182/hepdata.141624

The PHENIX experiment has measured open heavy-flavor production via semileptonic decay muons over the transverse momentum range 1 < pT < 6 GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p+p collisions at ?sNN = 200 GeV. In central d+Au collisions an enhancement (suppression) of heavy-flavor muon production is observed at backward (forward) rapidity relative to the yield in p+p collisions scaled by the number of binary collisions. Modification of the gluon density distribution in the Au nucleus contributes in terms of anti-shadowing enhancement and shadowing suppression; however, the enhancement seen at backward rapidity exceeds expectations from this effect alone. These results, implying an important role for additional cold nuclear matter effects, serves as a key baseline for heavy-quark measurements in A+A collisions and in constraining the magnitude of charmonia breakup effects at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

13 data tables match query

Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).

Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).

Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).

More…

Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized $p+p$, $p+$Al, and $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.Lett. 123 (2019) 122001, 2019.
Inspire Record 1725616 DOI 10.17182/hepdata.141938

We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized $p^{\uparrow}+p$, $p^{\uparrow}+$Al and $p^{\uparrow}+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The measurements have been performed at forward rapidity ($1.4<\eta<2.4$) over the range of $1.8<p_{T}<7.0$ GeV$/c$ and $0.1<x_{F}<0.2$. We observed a positive asymmetry $A_{N}$ for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in $p^{\uparrow}$+$A$ collisions. These results reveal a nuclear dependence of charged hadron $A_N$ in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.

2 data tables match query

$A_N$ as a function of $A^{1/3}$ for positively-charged hadrons at 1.4 < $\eta$ < 2.4, 0.1 < $x_F$ < 0.2, and 1.8 < $p_T$ < 7.0 GeV/$c$ in $p^{\uparrow}$+$p$, $p^{\uparrow}$+Al, and $p^{\uparrow}$+Au collisions.

$A_N$ as a function of $N^{Avg.}_{coll}$ for positively-charged hadrons at 1.4 < $\eta$ < 2.4, 0.1 < $x_F$ < 0.2, and 1.8 < $p_T$ < 7.0 GeV/$c$ in $p^{\uparrow}$+$p$, $p^{\uparrow}$+Al, and $p^{\uparrow}$+Au collisions.


Inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 535 (2002) 59-69, 2002.
Inspire Record 585623 DOI 10.17182/hepdata.54885

Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV &lt; P_T &lt; 12 GeV and |eta| &lt; 1.4. The cross sections sigma(e^+e^- -> e^+e^-D^{*+-}X) in this kinematical region is measured and the sigma(e^+e^- -> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

4 data tables match query

Visible D*+- production cross section in the given phase space range. Data are given for each D* decay channel, and the average.

Total cross section for open charm production. Data are given for each D* decay channel, and the combined average. The second systematic (DSYS) error is the uncertainty on the extrapolation from the visible to the full phase space region.

The measured D*+- production cross section in the region ABS(ETARAP) < 1.4.The DSIG/DPT points refer to the centre of the bin and the SIG points are the integrated over the bin.

More…