Inclusive jet cross-section in anti-p p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 68 (1992) 1104-1108, 1992.
Inspire Record 319237 DOI 10.17182/hepdata.19883

We present a measurement of the inclusive jet cross section in p¯p collisions at √s =1.8 TeV at the Fermilab Tevatron using the Collider Detector at Fermilab. Good agreement is seen with the predictions of recent next-to-leading-order [O(αs3)] QCD predictions. The dependence of the cross section on clustering cone size is reported for the first time. An improved limit on Λc, a term characterizing possible quark substructure, is set at 1.4 TeV (95% C.L.).

1 data table match query

Data are averaged over the pseudorapidity interval 0.1 to 0.7.


Measurement of the low-energy antideuteron inelastic cross section

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 125 (2020) 162001, 2020.
Inspire Record 1797442 DOI 10.17182/hepdata.96844

In this Letter, we report the first measurement of the inelastic cross section for antideuteron-nucleus interactions at low particle momenta, covering a range of $0.3 \leq p < 4$ GeV/$c$. The measurement is carried out using p-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, recorded with the ALICE detector at the CERN LHC and utilizing the detector material as an absorber for antideuterons and antiprotons. The extracted raw primary antiparticle-to-particle ratios are compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of antiparticles through the detector material. The analysis of the raw primary (anti)proton spectra serves as a benchmark for this study, since their hadronic interaction cross sections are well constrained experimentally. The first measurement of the inelastic cross section for antideuteron-nucleus interactions averaged over the ALICE detector material with atomic mass numbers $\langle A \rangle$ = 17.4 and 31.8 is obtained. The measured inelastic cross section points to a possible excess with respect to the Glauber model parameterization used in GEANT4 in the lowest momentum interval of $0.3 \leq p < 0.47$ GeV/$c$ up to a factor 2.1. This result is relevant for the understanding of antimatter propagation and the contributions to antinuclei production from cosmic ray interactions within the interstellar medium. In addition, the momentum range covered by this measurement is of particular importance to evaluate signal predictions for indirect dark-matter searches.

16 data tables match query

Raw primary antiproton-to-proton ratio as a function of the momentum p_primary.

Raw primary antiproton-to-proton ratio from Geant4-based MC simulations as a function of the momentum p_primary.

Raw primary antideuteron-to-deuteron ratio as a function of the momentum p_primary.

More…

Measurement of dielectron production in central Pb-Pb collisions at $\sqrt{{\textit{s}}_{\mathrm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024002, 2019.
Inspire Record 1680638 DOI 10.17182/hepdata.86551

The first measurement of dielectron ($\mathrm{e}^{+}\mathrm{e}^{-}$) production in central (0$-$10$\%$) Pb-Pb collisions at $\mathbf{\sqrt{{\textit{s}}_{\mathrm{NN}}}}$ = 2.76 TeV at the LHC is presented. The dielectron invariant-mass spectrum is compared to the expected contributions from hadron decays in the invariant-mass range $0 < m_{\mathrm{ee}}<3.5\ \mathrm{GeV}/\textit{c}^{2}$. The ratio of data and the cocktail of hadronic contributions without vacuum $\rho^{0}$ is measured in the invariant-mass range $0.15 < m_{\mathrm{ee}}<0.7\ \mathrm{GeV}/\textit{c}^{2}$, where an excess of dielectrons is observed in other experiments, and its value is $1.40 \pm 0.28\ (\mathrm{stat.}) \pm 0.08\ (\mathrm{syst.}) \pm 0.27\ (\mathrm{cocktail})$. The dielectron spectrum measured in the invariant mass range $0 < m_{\mathrm{ee}}<1\ \mathrm{GeV}/\textit{c}^{2}$ is consistent with the predictions from two theoretical model calculations that include thermal dielectron production from both partonic and hadronic phases with in-medium broadened $\rho^{0}$ meson. The fraction of direct virtual photons over inclusive virtual photons is extracted for dielectron pairs with invariant mass $0.1 < m_{\mathrm{ee}}<0.3\ \mathrm{GeV}/\textit{c}^{2}$, and in the transverse-momentum intervals $1<p_{\mathrm{T}, \mathrm{ee}}<2\ \mathrm{GeV}/\textit{c}$ and $2<p_{\mathrm{T}, \mathrm{ee}}<4\ \mathrm{GeV}/\textit{c}$. The measured fraction of virtual direct photons is consistent with the measurement of real direct photons by ALICE and with the expectations from previous dielectron measurements at RHIC within the experimental uncertainties.

7 data tables match query

Dielectron invariant-mass spectrum measured in central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. The statistical and systematic uncertainties of the data are represented by vertical bars and boxes.

Data-to-cocktail ratio. Statistical uncertainties are represented by vertical bars and systematic uncertainties by boxes.

Dielectron invariant-mass spectrum divided by the hadronic cocktail without the contribution from the vacuum $\rho^{0}$. The statistical and systematic uncertainties of data are represented by vertical bars and boxes.

More…

First Measurement of ZZ Production in panti-p Collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 100 (2008) 201801, 2008.
Inspire Record 778518 DOI 10.17182/hepdata.42695

We report the first measurement of the cross section for Z boson pair production at a hadron collider. This result is based on a data sample corresponding to 1.9 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. In the llll channel, we observe three ZZ candidates with an expected background of 0.096^{+0.092}_{-0.063} events. In the llnunu channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of llll and llnunu channels, we observe an excess of events with a probability of $5.1\times 10^{-6}$ to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is sigma(ppbar -> ZZ) = 1.4^{+0.7}_{-0.6} (stat.+syst.) pb, consistent with the standard model expectation.

1 data table match query

Measured cross section. Errors are combined statistics and systematics.


Measurement of the t anti-t Production Cross Section in p anti-p Collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Abulencia, A. ; Acosta, D. ; Adelman, J. ; et al.
Phys.Rev.Lett. 97 (2006) 082004, 2006.
Inspire Record 718721 DOI 10.17182/hepdata.42762

We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with the Collider Detector at Fermilab. We select ttbar decays into the final states e nu + jets and mu nu + jets, in which at least one b quark from the t-quark decays is identified using a secondary vertex-finding algorithm. Assuming a top quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat) +1.1-0.9 (syst) pb. We also report the first observation of ttbar with significance greater than 5 sigma in the subsample in which both b quarks are identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3 (syst) pb.

2 data tables match query

Measured cross section where at least one B quark from the TOP quark decays is identified.

Measured cross section where both B quarks from the TOP quark decays are identified.


Measurement of the t anti-t production cross-section in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 032002, 2001.
Inspire Record 552302 DOI 10.17182/hepdata.42935

We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses $t\bar{t}$ decays to the final states $e+\nu$+jets and $\mu+\nu$+jets. We search for $b$ quarks from $t$ decays via secondary-vertex identification or the identification of semileptonic decays of the $b$ and cascade $c$ quarks. The background to the $t\bar{t}$ production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 $GeV/c^2$, we measure $\sigma_{t\bar{t}}=5.1 \pm 1.5$ pb and $\sigma_{t\bar{t}}=9.2 \pm 4.3$ pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other $t\bar{t}$ decay channels and obtain $\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4}$ pb.

1 data table match query

Cross sections from the SVX (secondary vertex), SLT (soft lepton tag), dilepton and all hadronic analyses. See text of article for details. Errors contain both statistics and systematics.


$\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 04 (2018) 108, 2018.
Inspire Record 1645239 DOI 10.17182/hepdata.81727

The $p_{\rm T}$-differential production cross section of prompt $\Lambda_{\rm c}^+$ charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity. The $\Lambda_{\rm c}^+$ and ${\overline{\Lambda}}_{\rm c}^-$ were reconstructed in the hadronic decay modes $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K^-}\pi^+$, $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K_{\rm S}^0}$ and in the semileptonic channel $\Lambda_{\rm c}^+\rightarrow {\rm e^+}\nu_{\rm e}\Lambda$ (and charge conjugates). The measured values of the $\Lambda_{\rm c}^+/{\rm D_0}$ ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and $p_{\rm T}$ intervals, where the $\Lambda_{\rm c}^+$ production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the $\Lambda_{\rm c}^+$ nuclear modification factor, $R_{\rm pPb}$, is also presented. The $R_{\rm pPb}$ is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.

7 data tables match query

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$.

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.

The $\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio measured in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$ as a function of $p_{\rm {T}}$.

More…

$\rm \Lambda_{c}^{+}$ production and baryon-to-meson ratios in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 202301, 2021.
Inspire Record 1829739 DOI 10.17182/hepdata.114213

The prompt production of the charm baryon $\rm \Lambda_{c}^{+}$ and the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$TeV. These new measurements show a clear decrease of the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ ratio with increasing transverse momentum ($p_{\rm T}$) in both collision systems in the range $2<p_{\rm T}<12$ GeV/$c$, exhibiting similarities with the light-flavour baryon-to-meson ratios ${\rm p}/\pi$ and $\Lambda/\mathrm {K^0_S}$. At low $p_{\rm T}$, predictions that include additional colour-reconnection mechanisms beyond the leading-colour approximation; assume the existence of additional higher-mass charm-baryon states; or include hadronisation via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in $\mathrm {e^+e^-}$ and $\mathrm {e^-p}$ collisions significantly underestimate the data. The results presented in this letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.

8 data tables match query

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section in pp collisions at $\sqrt{s} = 5.02$ TeV in the rapidity interval $|y|<0.5$.

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.

The nuclear modification factor $R_\mathrm{pPb}$ of prompt $\Lambda_{\rm {c}}^{+}$ baryons in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $ -0.96\lt y \lt 0.04$.

More…

Measurement of the low-energy antitriton inelastic cross section

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 848 (2024) 138337, 2024.
Inspire Record 2675130 DOI 10.17182/hepdata.145643

In this Letter, the first measurement of the inelastic cross section for antitriton$-$nucleus interactions is reported, covering the momentum range of $0.8 \leq p < 2.4$ GeV/$c$. The measurement is carried out using data recorded with the ALICE detector in pp and Pb$-$Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to $A=3$ carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter.

10 data tables match query

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in exp. data.

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 0.75).

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 1.0).

More…

Branching ratio measurements of exclusive B+ decays to charmonium with the Collider Detector at Fermilab

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 66 (2002) 052005, 2002.
Inspire Record 588090 DOI 10.17182/hepdata.56734

We report on measurements of the branching ratios of the decays B+→χc10(1P)K+ and B+→J/ψK+π+π−, where χc10(1P)→J/ψγ and J/ψ→μ+μ− in pp¯ collisions at s=1.8TeV. Using a data sample from an integrated luminosity of 110pb−1 collected by the Collider Detector at Fermilab we measure the branching ratios to be BR(B+→χc10(1P)K+)=15.5±5.4(stat)±1.5(syst)±1.3(br)×10−4 and BR(B+→J/ψK+π+π−)=6.9±1.8(stat)±1.1(syst)±0.4(br)×10−4 where (br) is due to the finite precision on BR(B+→J/ψK+), BR(χc10(1P)→J/ψγ) is used to normalize the signal yield, and (syst) encompasses all other systematic uncertainties.

2 data tables match query

Branching ratio for B+ decay in chi_c1(1P) and K+ Last error is due to finite precision on the branching ratio for chi_c1(1P) --> J/psi photon.

Branching ratio for B+ decay in J/psi K+ pi+ pi- Last error is due to finite precision on the branching ratio for B+ --> J/psi K+.