Precise determination of the B0s-B0sbar oscillation frequency

The LHCb collaboration Aaij, R. ; Beteta, C. Abellán ; Ackernley, T. ; et al.
Nature Phys. 18 (2022) 1-5, 2022.
Inspire Record 1857623 DOI 10.17182/hepdata.105881

Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.

1 data table match query

Summary of LHCb measurements. Comparison of LHCb $\Delta m_s$ measurements from Refs. [8–11], the result presented in this article and their average. For the average, following systematic uncertainties are assumed to be fully correlated(:) zScale, MomentumScale, VeloAlignment and DecayTimeBias. The measurements are statistically uncorrelated.


Measurement of the $\eta_c(1S)$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Eur.Phys.J.C 80 (2020) 191, 2020.
Inspire Record 1763898 DOI 10.17182/hepdata.90457

Using a data sample corresponding to an integrated luminosity of $2.0\,fb^{-1}$, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13 \text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0\text{ GeV}}$. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the $J/\psi$ meson is measured using the ${p\bar{p}}$ decay mode and is found to be ${\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/\psi\to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The prompt $\eta_c(1S)$ production cross-section is determined to be ${\sigma_{\eta_c(1S)} = 1.26 \pm 0.11\pm 0.08 \pm 0.14 \,\mu b}$, where the last uncertainty includes that on the ${J/\psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $\eta_c(1S)$ and ${J/\psi}$ states is measured to be ${\mathcal{B}_{b\to\eta_c X}/\mathcal{B}_{b\to J/\psi X} = 0.48 \pm 0.03 \pm 0.03 \pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/\psi \to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The difference between the ${J/\psi}$ and $\eta_c(1S)$ masses is also determined to be ${113.0 \pm 0.7 \pm 0.1\text{ MeV}}$, which is the most precise single measurement of this quantity to date.

4 data tables match query

Relative $\eta_c$ to $J/\psi$ differential production cross-sections for prompt production. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.

Differential production cross-sections of $\eta_c$ for prompt production. The uncertainties are statistical, systematic, and due to the $\eta_c\to p \bar{p}$ and $J/\psi\to p \bar{p}$ branching fractions and $J/\psi$ production cross-section.

Relative $\eta_c$ to $J/\psi$ differential production cross-sections for production in $b$-hadron inclusive decays. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.

More…

Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure of the $P_c(4450)^+$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
Phys.Rev.Lett. 122 (2019) 222001, 2019.
Inspire Record 1728691 DOI 10.17182/hepdata.89271

A narrow pentaquark state, $P_c(4312)^+$, decaying to $J/\psi p$ is discovered with a statistical significance of $7.3\sigma$ in a data sample of ${\Lambda_b^0\to J/\psi p K^-}$ decays which is an order of magnitude larger than that previously analyzed by the LHCb collaboration. The $P_c(4450)^+$ pentaquark structure formerly reported by LHCb is confirmed and observed to consist of two narrow overlapping peaks, $P_c(4440)^+$ and $P_c(4457)^+$, where the statistical significance of this two-peak interpretation is $5.4\sigma$. Proximity of the $\Sigma_c^+\bar{D}^{0}$ and $\Sigma_c^+\bar{D}^{*0}$ thresholds to the observed narrow peaks suggests that they play an important role in the dynamics of these states.

4 data tables match query

Distribution of $(J/\psi p)$ system invariant mass from the decay of $\Lambda_{b}^{0}$ candidates in the channel $\Lambda_{b}^{0} \to J/\psi p K^{-}$.

Distribution of $(J/\psi p)$ system invariant mass from the decay of $\Lambda_{b}^{0}$ candidates in the channel $\Lambda_{b}^{0} \to J/\psi p K^{-}$. $\Lambda_{b}^{0}$ candidates are selected after the suppression of the dominant $\Lambda^{*} \to p K^{-}$ contributions using the $m_{Kp} > 1.9$ GeV$/c^2$ requirement.

$\cos \theta_{P_c}$-weighted ditribution of $(J/\psi p)$ system invariant mass from the decay of $\Lambda_{b}^{0}$ candidates in the channel $\Lambda_{b}^{0} \to J/\psi p K^{-}$. Here $\theta_{P_c}$ is the helicity angle of the pentaquark exotic state (the angle between $K^-$ and $J/\psi$ in the pentaquark state rest frame).

More…

Measurement of the $B^{\pm}$ production cross-section in pp collisions at $\sqrt{s} =$ 7 and 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 12 (2017) 026, 2017.
Inspire Record 1630633 DOI 10.17182/hepdata.149528

The production of $B^{\pm}$ mesons is studied in $pp$ collisions at centre-of-mass energies of 7 and 13 TeV, using $B^{\pm}\rightarrow J/\psi K^{\pm}$ decays and data samples corresponding to 1.0 fb$^{-1}$ and 0.3 fb$^{-1}$, respectively. The production cross-sections summed over both charges and integrated over the transverse momentum range $0<p_{\text{T}}< 40$ GeV/$c$ and the rapidity range $2.0<y<4.5$ are measured to be $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{7 TeV}) = 43.0 \pm 0.2 \pm 2.5 \pm 1.7\mu b,$ $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{13 TeV}) = 86.6 \pm 0.5 \pm 5.4 \pm 3.4\mu b,$ where the first uncertainties are statistical, the second are systematic, and the third are due to the limited knowledge of the $B^{\pm}\rightarrow J/\psi K^{\pm}$ branching fraction. The ratio of the cross-section at 13 TeV to that at 7 TeV is determined to be $2.02\pm0.02\text{(stat)}\pm0.12\text{(syst)}$. Differential cross-sections are also reported as functions of $p_{\text{T}}$ and $y$. All results are in agreement with theoretical calculations based on the state-of-art fixed next-to-leading order quantum chromodynamics.

4 data tables match query

Measured B$^\pm$ double-differential cross-section (in units of nb) at 7 TeV, as a function of $p_T$ and $y$.

Measured B$^\pm$ double-differential cross-section (in units of nb) at 13 TeV, as a function of $p_T$ and $y$.

Measured B$^\pm$ differential cross-sections (in units of nb) at 7 TeV and 13 TeV as functions of $p_T$ in the range $2.0<y<4.5$. The cross-section ratio between 13 TeV and 7TeV is also presented.

More…

Measurement of forward top pair production in the dilepton channel in $pp$ collisions at $\sqrt{s}=13$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2018) 174, 2018.
Inspire Record 1662483 DOI 10.17182/hepdata.97367

Forward top quark pair production is studied in $pp$ collisions in the $\mu eb$ final state using a data sample corresponding to an integrated luminosity of 1.93 fb$^{-1}$ collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The cross-section is measured in a fiducial region where both leptons have a transverse momentum greater than 20 GeV and a pseudorapidity between 2.0 and 4.5. The quadrature sum of the azimuthal separation and the difference in pseudorapidities, denoted $\Delta R$, between the two leptons must be larger than 0.1. The $b$-jet axis is required to be separated from both leptons by a $\Delta R$ of 0.5, and to have a transverse momentum in excess of 20 GeV and a pseudorapidity between 2.2 and 4.2. The cross-section is measured to be $$\sigma_{t\bar{t}}= 126\pm19\,(\mathrm{stat})\pm16\,(\mathrm{syst})\pm5\,(\mathrm{lumi})\,\,\mathrm{ fb}$$ where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measurement is compatible with the Standard Model prediction.

1 data table match query

The measured fiducial cross section. The uncertainty is split into statistical, systematic and uncertainty due to luminosity.


Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2018) 100, 2018.
Inspire Record 1665223 DOI 10.17182/hepdata.89782

The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13\,TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$\,GeV/$c$ in the pseudorapidity range $2<\eta<5$ is determined to be $\sigma_{\rm acc}= 62.2 \pm 0.2 \pm 2.5$\,mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\sigma_{\rm inel}= 75.4 \pm 3.0 \pm 4.5$\,mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7\,TeV is also reported.

3 data tables match query

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p > 2.0$ GeV/$c$ and $2.0 < \eta < 5.0$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is found negligible. A particle is long-lived if its proper (mean) lifetime is larger than 30 ps, and it is prompt if it is produced directly in the $pp$ interaction or if none of its ancestors is long-lived.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, extrapolated from Monte Carlo in similar way to measurement at $\sqrt{s}=7$ TeV.

Update of the total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV due to improved calibration of the luminosity scale.


Measurement of antiproton production from antihyperon decays in pHe collisions at $\sqrt{s_{NN}}=110$ GeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S. W. ; Beteta, C.Abellan ; et al.
Eur.Phys.J.C 83 (2023) 543, 2023.
Inspire Record 2084295 DOI 10.17182/hepdata.130780

The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110 GeV/c. The dominant antihyperon contribution, namely $\bar{\Lambda} \to \bar{p} \pi^+$ decays from promptly produced $\bar{\Lambda}$ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models.

2 data tables match query

Ratio of the antihyperon decays to prompt antiproton production (R_Hbar) in collisions of 6.5 TeV protons on He nuclei at rest in antiproton momentum and transverse momentum intervals. The average momentum and transverse momentum, as predicted by the EPOS-LHC generator for prompt antiprotons, are also listed for each interval. The uncertainty is split into an uncorrelated component, denoted with delta_uncorr, and a component that is fully correlated among the kinematic intervals, denoted delta_corr.

Ratio of the Lbar decays to prompt antiproton production (R_Lbar) in collisions of 6.5 TeV protons on He nuclei at rest in antiproton momentum and transverse momentum intervals. The average momentum and transverse momentum, as predicted by the EPOS-LHC generator for prompt antiprotons, are also listed for each interval. The uncertainty is split into an uncorrelated component, denoted with delta_uncorr, and a component that is fully correlated among the kinematic intervals, denoted delta_corr.


Measurement of $D_s^{\pm}$ production asymmetry in $pp$ collisions at $\sqrt{s} =7$ and 8 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2018) 008, 2018.
Inspire Record 1674916 DOI 10.17182/hepdata.82715

The inclusive $D_s^{\pm}$ production asymmetry is measured in $pp$ collisions collected by the LHCb experiment at centre-of-mass energies of $\sqrt{s} =7$ and 8 TeV. Promptly produced $D_s^{\pm}$ mesons are used, which decay as $D_s^{\pm}\to\phi\pi^{\pm}$, with $\phi\to K^+K^-$. The measurement is performed in bins of transverse momentum, $p_{\rm T}$, and rapidity, $y$, covering the range $2.5

6 data tables match query

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the combined $\sqrt{s} =7$ and 8 TeV data sets. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =7$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =8$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

More…

Version 2
Measurement of matter-antimatter differences in beauty baryon decays

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Nature Phys. 13 (2017) 391-396, 2017.
Inspire Record 1487273 DOI 10.17182/hepdata.76921

Differences in the behaviour of matter and antimatter have been observed in $K$ and $B$ meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C\!P$ violation. Using data from the LHCb experiment at the Large Hadron Collider, a search is made for $C\!P$-violating asymmetries in the decay angle distributions of $\Lambda^0_b$ baryons decaying to $p\pi^-\pi^+\pi^-$ and $p\pi^-K^+K^-$ final states. These four-body hadronic decays are a promising place to search for sources of $C\!P$ violation both within and beyond the Standard Model of particle physics. We find evidence for $C\!P$ violation in $\Lambda^0_b$ to $p\pi^-\pi^+\pi^-$ decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for $C\!P$ violation in the baryon sector.

12 data tables match query

Binning scheme A is defined to exploit interference patterns arising from the resonant structure of the decay. Bins 1-4 focus on the region dominated by the $\Delta(1232)^{++}\to p\pi^{+}$. The other eight bins are defined to study regions where $p\pi^{-}$ esonances are present (5-8) on either side of the $\rho(770)^{0}\to\pi^{+}\pi^{-}$ resonances (5-12). Further splitting for $|\Phi|$ lower or greater than $\pi/2$ is done to reduce potential dilution of asymmetries.

Binning scheme A is defined to exploit interference patterns arising from the resonant structure of the decay. Bins 1-4 focus on the region dominated by the $\Delta(1232)^{++}\to p\pi^{+}$. The other eight bins are defined to study regions where $p\pi^{-}$ resonances are present (5-8) on either side of the $\rho(770)^{0}\to\pi^{+}\pi^{-}$ resonances (5-12). Further splitting for $|\Phi|$ lower or greater than $\pi/2$ is done to reduce potential dilution of asymmetries.

Definition of binning scheme B for the decay mode $\Lambda_b^0\to p\pi^-\pi^+\pi^-$.

More…

Measurement of the $J/\psi$ pair production cross-section in $pp$ collisions at $\sqrt{s} = 13 \,{\mathrm{TeV}}$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2017) 047, 2017.
Inspire Record 1505592 DOI 10.17182/hepdata.79484

The production cross-section of $J/\psi$ pairs is measured using a data sample of $pp$ collisions collected by the LHCb experiment at a centre-of-mass energy of $\sqrt{s} = 13 \,{\mathrm{TeV}}$, corresponding to an integrated luminosity of $279 \pm 11 \,{\mathrm{pb^{-1}}}$. The measurement is performed for $J/\psi$ mesons with a transverse momentum of less than $10 \,{\mathrm{GeV}}/c$ in the rapidity range $2.0<y<4.5$. The production cross-section is measured to be $15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}$. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the $J/\psi$ pair are measured and compared to theoretical predictions.

22 data tables match query

Differential cross-section of $J/\psi$ pair as a function of $p_{T}(J/\psi J/\psi)$.

Differential cross-section of $J/\psi$ pair as a function of $p_{T}(J/\psi)$.

Differential cross-section of $J/\psi$ pair as a function of $y(J/\psi J/\psi)$.

More…