Search for lepton-flavor violating decays of the Higgs boson in the $\mu\tau$ and e$\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 104 (2021) 032013, 2021.
Inspire Record 1862497 DOI 10.17182/hepdata.104861

A search is presented for lepton-flavor violating decays of the Higgs boson to $\mu\tau$ and e$\tau$. The data set corresponds to an integrated luminosity of 137 fb$^{-1}$ collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, $\mathcal{B}($H $\to\mu\tau)$$\lt$ 0.15 (0.15)% and $\mathcal{B}($H$\to$e$\tau)$ $\lt$ 0.22 (0.16)% at 95% confidence level.

4 data tables match query

Observed (expected) 95% CL upper limits on $B(H\to\mu\tau)$ for each individual category and combined

Observed (expected) 95% CL upper limits on $B(H\to e\tau)$ for each individual category and combined

Summary of observed and expected upper limits at 95% CL, best fit branching fractions and corresponding constraints on Yukawa couplings for the $H\to\mu\tau$ and $H\to e\tau$ channels

More…

Search for light long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} =$ 13 TeV and decaying into collimated leptons or light hadrons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 450, 2020.
Inspire Record 1752519 DOI 10.17182/hepdata.91132

Several models of physics beyond the Standard Model predict the existence of dark photons, light neutral particles decaying into collimated leptons or light hadrons. This paper presents a search for long-lived dark photons produced from the decay of a Higgs boson or a heavy scalar boson and decaying into displaced collimated Standard Model fermions. The search uses data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV recorded in 2015-2016 with the ATLAS detector at the Large Hadron Collider. The observed number of events is consistent with the expected background, and limits on the production cross section times branching fraction as a function of the proper decay length of the dark photon are reported. A cross section times branching fraction above 4 pb is excluded for a Higgs boson decaying into two dark photons for dark-photon decay lengths between 1.5 mm and 307 mm.

19 data tables match query

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 4\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 800 GeV in the muon-muon final state.

More…

Search for decays of the 125 GeV Higgs boson into a Z boson and a $\rho$ or $\phi$ meson

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 039, 2020.
Inspire Record 1806506 DOI 10.17182/hepdata.95908

Decays of the 125 GeV Higgs boson into a Z boson and a $\rho^0$(770) or $\phi$(1020) meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC at $\sqrt{s} = $ 13 TeV. The analysed data set corresponds to an integrated luminosity of 137 fb$^{-1}$. Events are selected in which the Z boson decays into a pair of electrons or a pair of muons, and the $\rho$ and $\phi$ mesons decay into pairs of pions and kaons, respectively. No significant excess above the background model is observed. As different polarization states are possible for the decay products of the Z boson and $\rho$ or $\phi$ mesons, affecting the signal acceptance, scenarios in which the decays are longitudinally or transversely polarized are considered. Upper limits at the 95% confidence level on the Higgs boson branching fractions into Z$\rho$ and Z$\phi$ are determined to be 1.04-1.31% and 0.31-0.40%, respectively, where the ranges reflect the considered polarization scenarios; these values are 740-940 and 730-950 times larger than the respective standard model expectations. These results constitute the first experimental limits on the two decay channels.

2 data tables match query

Observed and expected 95% CL upper limits on B(H $\rightarrow$ Z$\rho$), for different polarizations.

Observed and expected 95% CL upper limits on B(H $\rightarrow$ Z$\phi$), for different polarizations.


Measurement of the WZ production cross section and limits on anomalous triple gauge couplings in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 709 (2012) 341-357, 2012.
Inspire Record 954993 DOI 10.17182/hepdata.68039

This Letter presents a measurement of WZ production in 1.02 fb^-1 of pp collision data at sqrt(s) = 7 TeV collected by the ATLAS experiment in 2011. Doubly leptonic decay events are selected with electrons, muons and missing transverse momentum in the final state. In total 71 candidates are observed, with a background expectation of 12.1 +/- 1.4(stat.) +4.1/-2.0(syst) events. The total cross section for WZ production for Z gamma^* masses within the range 66 GeV to 116 GeV is determined to be sigma_WZ^tot = 20.5 +3.1/-2.8(stat.) +1.4/-1.3(syst.) +0.9/-0.8(lumi.)pb, which is consistent with the Standard Model expectation of 17.3 +1.3/-0.8 pb. Limits on anomalous triple gauge boson couplings are extracted.

1 data table match query

Total fiducial cross-section $WZ\to\ell\nu\ell\ell$.


Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 04 (2022) 048, 2022.
Inspire Record 1972089 DOI 10.17182/hepdata.114361

A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.

7 data tables match query

Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.

More…

QCD studies with e+ e- annihilation data at 172-GeV to 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 185-210, 2000.
Inspire Record 513476 DOI 10.17182/hepdata.49000

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity <nch> and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, <nch> and xi_0 are consistent with previous determinations at sqrt{s}=MZ.

20 data tables match query

Distribution of Thrust.

Distribution of Thrust Major.

Distribution of Thrust Minor.

More…

Measurement of the Higgs boson coupling properties in the $H\rightarrow ZZ^{*} \rightarrow 4\ell$ decay channel at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2018) 095, 2018.
Inspire Record 1641268 DOI 10.17182/hepdata.83009

The coupling properties of the Higgs boson are studied in the four-lepton decay channel using 36.1 fb$^{-1}$ of $pp$ collision data from the LHC at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. Cross sections are measured for the four key production modes in several exclusive regions of the Higgs boson production phase space and are interpreted in terms of coupling modifiers. The inclusive cross section times branching ratio for $H \rightarrow ZZ^*$ decay and for a Higgs boson absolute rapidity below 2.5 is measured to be $1.73^{+0.24}_{-0.23}$(stat.)$^{+0.10}_{-0.08}$(exp.)$\pm 0.04$(th.) pb compared to the Standard Model prediction of $1.34\pm0.09$ pb. In addition, the tensor structure of the Higgs boson couplings is studied using an effective Lagrangian approach for the description of interactions beyond the Standard Model. Constraints are placed on the non-Standard-Model CP-even and CP-odd couplings to $Z$ bosons and on the CP-odd coupling to gluons.

28 data tables match query

The expected number of SM Higgs boson events with a mass mH= 125.09 GeV in the mass range 118 < m4l < 129 GeV for an integrated luminosity of 36.1/fb and sqrt(s)= 13 TeV in each reconstructed event category, shown separately for each Stage-0 production bin. The ggF and bbH contributions are shown separately but both contribute to the same (ggF) production bin. Statistical and systematic uncertainties are added in quadrature.

The observed and expected numbers of signal and background events in the four-lepton decay channels for an integrated luminosity of 36.1/fb and at sqrt(s)= 13 TeV, assuming the SM Higgs boson signal with a mass m_{H} = 125.09 GeV . The second column shows the expected number of signal events for the full mass range while the subsequent columns correspond to the mass range of 118 < m4l < 129 GeV. In addition to the ZZ* background, the contribution of other backgrounds is shown, comprising the data-driven estimate from Table 4 and the simulation-based estimate of contributions from rare triboson and tbar{t}V processes. Statistical and systematic uncertainties are added in quadrature.

The expected and observed numbers of signal events in reconstructed event categories for an integrated luminosity of 36.1/fb at sqrt(s)= 13 TeV, together with signal acceptances for each Stage-0 production mode. Results are obtained in bins of BDT discriminants using coarse binning with several bins merged into one. Signal acceptances less than 0.0001 are set to 0.

More…

Measurement of the low-energy antideuteron inelastic cross section

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 125 (2020) 162001, 2020.
Inspire Record 1797442 DOI 10.17182/hepdata.96844

In this Letter, we report the first measurement of the inelastic cross section for antideuteron-nucleus interactions at low particle momenta, covering a range of $0.3 \leq p < 4$ GeV/$c$. The measurement is carried out using p-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, recorded with the ALICE detector at the CERN LHC and utilizing the detector material as an absorber for antideuterons and antiprotons. The extracted raw primary antiparticle-to-particle ratios are compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of antiparticles through the detector material. The analysis of the raw primary (anti)proton spectra serves as a benchmark for this study, since their hadronic interaction cross sections are well constrained experimentally. The first measurement of the inelastic cross section for antideuteron-nucleus interactions averaged over the ALICE detector material with atomic mass numbers $\langle A \rangle$ = 17.4 and 31.8 is obtained. The measured inelastic cross section points to a possible excess with respect to the Glauber model parameterization used in GEANT4 in the lowest momentum interval of $0.3 \leq p < 0.47$ GeV/$c$ up to a factor 2.1. This result is relevant for the understanding of antimatter propagation and the contributions to antinuclei production from cosmic ray interactions within the interstellar medium. In addition, the momentum range covered by this measurement is of particular importance to evaluate signal predictions for indirect dark-matter searches.

16 data tables match query

Raw primary antiproton-to-proton ratio as a function of the momentum p_primary.

Raw primary antiproton-to-proton ratio from Geant4-based MC simulations as a function of the momentum p_primary.

Raw primary antideuteron-to-deuteron ratio as a function of the momentum p_primary.

More…

Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4$\ell$ decay channel at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 942, 2020.
Inspire Record 1790439 DOI 10.17182/hepdata.94312

Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^{*} \to 4\ell$ ($\ell = e,\mu$) decay channel. The results are based on proton$-$proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^{*} \to 4\ell$ process is measured to be $\sigma_\mathrm{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\mathrm{fid, SM} = 3.41 \pm 0.18 $ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.

76 data tables match query

Fractional uncertainties for the inclusive fiducial and total cross sections, and range of systematic uncertainties for the differential measurements. The columns e/$\mu$ and jets represent the experimental uncertainties in lepton and jet reconstruction and identification, respectively. The Z + jets, $t\bar{t}$, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The $ZZ^{*}$ theory ($ZZ^{*}$ th.) uncertainties include the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled Comp. contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the nearest 0.5%, except for the luminosity uncertainty which has been measured to be 1.7%.

Expected (pre-fit) and observed number of events in the four decay final states after the event selection, in the mass range 115< $m_{4l}$ < 130 GeV. The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data. Combined statistical and systematic uncertainties are included for the predictions.

The fiducial and total cross sections of Higgs boson production measured in the 4l final state. The fiducial cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all final states ($\sigma_{sum}$), as well as by combining the per-final state measurements assuming SM $ZZ^{*} \to 4l$ relative branching ratios ($\sigma_{comb}$). For the total cross section ($\sigma_{tot}$), the Higgs boson branching ratio at $m_{H}$= 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fiducial cross section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. The p-values indicating the compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions.

More…

Measurements of the ZZ production cross sections in the 2 l 2 nu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV and combined constraints on triple gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 511, 2015.
Inspire Record 1353393 DOI 10.17182/hepdata.69984

Measurements of the ZZ production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8 TeV are presented. Candidate events for the leptonic decay mode ZZ to 2 l 2 nu, where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6) inverse femtobarns at 7 (8) TeV collected with the CMS experiment. The measured cross sections, sigma(pp to ZZ) = 5.1 -1.4 +1.5 (stat) -1.1 +1.4 (syst) +/- 0.1 (lumi) pb at 7 TeV, and 7.2 -0.8 +0.8 (stat.) -1.5 +1.9 (syst) +/- 0.2 (lumi) pb at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the ZZ final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for ZZ in 4 l final states, yielding the most stringent constraints on the anomalous couplings.

1 data table match query

Using a maximum-likelihood fit to the reduced-MET data distributions, with all the systematic uncertainties incorporated as nuisance parameters, we obtain the following cross sections for the pp->ZZ process (with both Z bosons in the mass range 60-120 GeV). The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity. The theory calculations are 6.2+0.3-0.2 pb at 7 TeV and 7.6+0.4-0.3 pb at 8 TeV, including NLO QCD and NLO EW corrections.