The Production of Beauty Particles in $\pi^-$ U Interactions at 320-{GeV} Energy

The WA78 collaboration Catanesi, M.G. ; Muciaccia, M.T. ; Natali, S. ; et al.
Phys.Lett.B 187 (1987) 431-436, 1987.
Inspire Record 235069 DOI 10.17182/hepdata.6522

B B production in π − -uranium interactions has been observed at 320 GeV beam energy looking at events with three muons in the final state. The cross section is found to be σ B B = 4.5±1.4±1.4 nb per nucleon (for a linear A -dependence) or σ B B = 17.6±5.5±5.5 nb per nucleon (assuming A 0.75 dependence). An estimate of x F distribution is given.

1 data table match query

BEAUTY INCLUSIVE SPECTRA WAS ASSUMED TO BE E*D(SIG)/D(X)/D(PT**2) = EXP(-0.9*PT**2)*(1-ABS(X))**A. THE BEST FIT FOR A IS A = 2.5.


Measurement of the Reactions $e^+ e^- \to \mu^+ \mu^-$ and $e^+ e^- \to \tau^+ \tau^-$ Between $\sqrt{s}=50$-{GeV} and 60.8-{GeV}

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Z.Phys.C 48 (1990) 13-22, 1990.
Inspire Record 294672 DOI 10.17182/hepdata.38414

The angular distributions of the reactione+e−→μ+μ− ande+e+→τ+τ− have been measured between\(\sqrt s= 50\) and 60.8 GeV with the VENUS detector at TRISTAN. The average total cross section and the forward-backward charge asymmetry for μ-pair production are observed to be 28.3±1.4±0.8 pb and (−29.0−4.8+5.0±0.5)%, and those for τ-pair production are 27.6±1.7±1.0 pb and (−32.8−6.2+6.4±1.5)% at\(\langle \sqrt s \rangle \). These values are consistent with the predictions of the standard model of electroweak interactions.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the cross section of W-boson pair production at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 600 (2004) 22-40, 2004.
Inspire Record 658254 DOI 10.17182/hepdata.48792

The cross section of W-boson pair-production is measured with the L3 detector at LEP. In a data sample corresponding to a total luminosity of 629.4/pb, collected at centre-of-mass energies ranging from 189 to 209 GeV, 9834 four-fermion events with W bosons decaying into hadrons or leptons are selected. The total cross section is measured with a precision of 1.4 % and agrees with the Standard Model expectation. Assuming charged-lepton universality, the branching fraction for hadronic W-boson decays is measured to be: Br(W-->hadrons) = 67.50 +- 0.42 (stat.) +- 0.30(syst.) %, in agreement with the Standard Model. Differential cross sections as a function of the W- production angle are also measured for the semi-leptonic channels qqev and qqmv.

11 data tables match query

Measured cross section for the process E+ E- --> LEPTON NU LEPTON NU.

Measured cross section for the process E+ E- --> QUARK QUARKBAR ELECTRON NEUTRINO.

Measured cross section for the process E+ E- --> QUARK QUARKBAR MUON NEUTRINO.

More…

Production of Charmed Particles in 250-GeV mu+ - Iron Interactions

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Nucl.Phys.B 213 (1983) 31-64, 1983.
Inspire Record 180921 DOI 10.17182/hepdata.46965

Dimuon and trimuon events produced by the interaction of 250 GeV muons in an iron target have been studied and are shown to originate predominantly from charm production. The data are used to measure the contribution of charm to the nucleon structure function F 2 . The cross sections for real photoproduction ( Q 2 =0) of charm in the current fragmentation region are derived as a function of photon energy and are found to be ∼0.6% of the total, hadronic photoproduction cross section in this energy range. The measured cross sections are found to be well represented by the photon-gluon fusion model. The charmed quark fragmentation function is obtained by using this model to fit the measured decay muon energy distribution and is found to be well represented by exp(1.6±1.6) Z . The data are used to study the momentum distribution of the gluons in the nucleon. An upper limit of 1.4% (90% confidence level) is set on the branching ratio D→ μν and a model-dependent upper limit on the branching ratio F→ μν is derived.

9 data tables match query

The charm contribution to the nucleon structure function from the dimuon data.

No description provided.

No description provided.

More…

Lepton and Pion Pair Production in $\gamma \gamma$ Collisions Measured Near the Threshold at Dci

Courau, A. ; Falvard, A. ; Haissinski, J. ; et al.
Nucl.Phys.B 271 (1986) 1-20, 1986.
Inspire Record 232808 DOI 10.17182/hepdata.38240

This paper reports a complete analysis of data taken at DCI to measure lepton and pion pair production close to the threshold in two-photon processes: e + e − → e + e − (e + e − , μ + μ − , π + π − ). Preliminary results have been previously published including one-half of the total statistics. Final results presented here are in good agreement with QED for lepton pair production. The measured cross section for pion pair production is twice as large as that expected from Born terms only — a two standard deviation effect.

1 data table match query

Normalised to number of observed electron pairs. Fully corrected for acceptance, radiative effects etc.


Search for the B/c meson.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 207-222, 1997.
Inspire Record 428162 DOI 10.17182/hepdata.47617

In a sample of 3.02 million hadronic Z 0 decays collected by the DELPHI detector, 270 J ψ → ℓ + ℓ − candidates have been selected. A search for fully reconstructed B c ± mesons has yielded one B c ± → J ψ π ± candidate, no B c ± → J ψ ℓ ± ν ℓ candidates, and one B c ± → J ψ , π + π − π ± candidate, consistent with expected background in each channel. The following 90% confidence level upper limits are determined: Br(Z 0 → B c ± X) × Br(B c ± → J ψ π ± ) < (1.05 to 0.84) × 10 −4 and Br(Z 0 → B c ± X) × Br(B c ± → J ψ ℓ ± ν ℓ ) < (5.8 to 5.0) × 10 −5 , where the ranges quoted correspond to the range of predicted B c ± lifetimes from 0.4 to 1.4 ps, and Br(Z 0 → B c ± X) × Br(B c ± → J ψ π + π − π ± ) < 1.75 × 10 −4 , constant over the range of predicted B c ± lifetimes.

1 data table match query

B/C life-time equals (0.4 to 1.4) ps.


Photon structure functions and azimuthal correlations of lepton pairs in tagged gamma gamma collisions.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 438 (1998) 363-378, 1998.
Inspire Record 470997 DOI 10.17182/hepdata.49546

The reactions e + e − → e + e − e + e − and e + e − → e + e − μ + μ − , in a single tag configuration, are studied at LEP with the L3 detector. The data set corresponds to an integrated luminosity of 93.7 pb −1 at s =91 GeV. Differential cross sections are measured for 1.4 GeV 2 ≤Q 2 ≤7.6 GeV 2 . The leptonic photon structure function F γ 2 and azimuthal correlations are measured for e + e − → e + e − μ + μ − . The related structure functions F γ A and F γ B , which originate from interference terms of the scattering amplitudes, are determined for the first time.

1 data table match query

The systematic and statistical errors added in quadrature. F2(NAME=FA) AND F2(NAME=FB) are related structure functions FA and FB, which originate from inerference terms of the scattering amplitudes. See text for exact definition and details.


A study of final-state radiation in decays of Z bosons produced in pp collisions at 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.D 91 (2015) 092012, 2015.
Inspire Record 1346843 DOI 10.17182/hepdata.67634

The differential cross sections for the production of photons in Z to mu+ mu- gamma decays are presented as a function of the transverse energy of the photon and its separation from the nearest muon. The data for these measurements were collected with the CMS detector and correspond to an integrated luminosity of 4.7 inverse femtobarns of pp collisions at sqrt(s) = 7 TeV delivered by the CERN LHC. The cross sections are compared to simulations with POWHEG and PYTHIA, where PYTHIA is used to simulate parton showers and final-state photons. These simulations match the data to better than 5%.

8 data tables match query

Measured differential cross section dsigma/dET in pb/GeV. For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

Measured differential cross section dsigma/dET in pb/GeV given (0.05 < DeltaR < 0.5). For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

Measured differential cross section dsigma/dET in pb/GeV given (0.5 < DeltaR < 3.0). For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

More…

Measurement of the $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ Cross Sections in $pp$ Collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 727 (2013) 101-125, 2013.
Inspire Record 1225274 DOI 10.17182/hepdata.60518

The $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 $\pm$ 1.4 inverse picobarns of proton-proton collisions at $\sqrt{s}$ = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the $\Upsilon$ transverse momentum range $p_{t}^{\Upsilon} \lt$ 50GeV and rapidity range |$y^\Upsilon$| $\lt$ 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are \begin{equation*}\sigma(pp \to \Upsilon(1S) X) . B(\Upsilon(1S) \to \mu^+ \mu^-) = (8.55 \pm 0.05^{+0.56}_{-0.50} \pm 0.34) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(2S) X) . B(\Upsilon(2S) \to \mu^+ \mu^-) = (2.21 \pm 0.03^{+0.16}_{-0.14} \pm 0.09) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(3S) X) . B(\Upsilon(3S) \to \mu^+ \mu^-) = (1.11 \pm 0.02^{+0.10}_{-0.08} \pm 0.04) nb, \end{equation*} where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements.

31 data tables match query

The fiducial and acceptance-corrected cross sections for PT<50 GeV/c and |rapidity|<2.4.

The fiducial and acceptance corrected UPSI(1S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range < 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(1S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.

The fiducial and acceptance corrected UPSI(2S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range < 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(2S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.

More…

ANTI-NEUTRINO - NUCLEON TOTAL CROSS-SECTION AND RATIO OF ANTI-NEUTRINO CROSS-SECTION ON NEUTRONS AND PROTONS

Erriquez, O. ; Fogli-Muciaccia, M.T. ; Natali, S. ; et al.
Phys.Lett.B 80 (1979) 309-313, 1979.
Inspire Record 143176 DOI 10.17182/hepdata.27366

On a selected sample of 2171 events, observed in the big heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined up to the laboratory energy E v ̄ = 8 GeV . The total cross section is found to be a linear function of the antineutrino energy expressed by σ tot (E v ̄ ) = (0.26 ± 0.020) × 10 −38 × E v ̄ ( GeV ) cm 2 . The energy dependence of 〈q 2 〉 v ̄ is found to be given by 〈q 2 〉 v ̄ = (0.15 ± 0.04)E v ̄ + (0.05 ± 0.12) ( GeV /c) 2 . With a simplified nuclear model the ratio of cross sections on neutrons andprotons has been estimated as a function of energy and for two different values of the scaling variable x . The results are compared with the prediction of the naive quark parton model.

1 data table match query

Measured charged current total cross section.