Precision measurement of the proton and deuteron spin structure functions g2 and asymmetries A(2).

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 553 (2003) 18-24, 2003.
Inspire Record 585675 DOI 10.17182/hepdata.27033

We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.

7 data tables match query

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 2.75 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 5.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 10.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

More…

Measurement of the proton and deuteron spin structure functions g2 and asymmetry A(2).

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 458 (1999) 529-535, 1999.
Inspire Record 493768 DOI 10.17182/hepdata.27072

We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.

4 data tables match query

2.75 degree spectrometer data.

5.5 degree spectrometer data.

10.5 degree spectrometer data.

More…

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

22 data tables match query

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Measurement of the neutron spin structure function g2(n) and asymmetry A2(n).

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 404 (1997) 377-382, 1997.
Inspire Record 443408 DOI 10.17182/hepdata.27082

We have measured the neutron structure function g$_{2}^{n}$ and the virtual photon-nucleon asymmetry A$_{2}^{n}$ over the kinematic range $0.014\leq x \leq 0.7$ and $1.0 \leq Q^{2} \leq 17.0$ by scattering 48.3 GeV longitudinally polarized electrons from polarized $^{3}$He. Results for A$_{2}^{n}$ are significantly smaller than the $\sqrt{R}$ positivity limit over most of the measured range and data for g$_2^{n}$ are generally consistent with the twist-2 Wandzura-Wilczek prediction. Using our measured g$_{2}^{n}$ we obtain results for the twist-3 reduced matrix element $d_{2}^{n}$, and the integral $\int$g$_{2}^{n}(x)dx$ in the range $0.014\leq x \leq 1.0$. Data from this experiment are combined with existing data for g$_{2}^{n}$ to obtain an average for $d_{2}^{n}$ and the integral $\int$g$_{2}^{n}(x)dx$.

4 data tables match query

Data measured using the 2.75 degree spectrometer.

Data measured using the 5.5 degree spectrometer.

Measured value of the twist-3 reduced matrix element D2.

More…

Measurements of the Q**2 dependence of the proton and deuteron spin structure functions g1(p) and g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 364 (1995) 61-68, 1995.
Inspire Record 401107 DOI 10.17182/hepdata.28431

The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Total Neutrino and Anti-neutrino Charged Current Cross-section Measurements in 100-{GeV}, 160-{GeV} and 200-{GeV} Narrow Band Beams

Berge, J.P. ; Blondel, A. ; Bockmann, P. ; et al.
Z.Phys.C 35 (1987) 443, 1987.
Inspire Record 246156 DOI 10.17182/hepdata.15709

Neutrino and antineutrino total charged current cross sections on iron were measured in the 100, 160, and 200 GeV narrow band beams at the CERN SPS in the energy range 10 to 200 GeV. Assuming σ/E to be constant, the values corrected for non-isoscalarity are σv/E = (0.686 ± 0.019) * 10−38 cm2/ (GeV · nucleon) and σv/E = (0.339 ± 0.010) * 10−38 cm2/ (GeV·nucleon). Between 50 and 150 GeV no energy dependence of σ/E was observed within ±3% for neutrino and ±4% for antineutrino interactions.

5 data tables match query

Measured charged current total cross section.

Measured charged current total cross section.

No description provided.

More…

Precision determination of the neutron spin structure function g1(n).

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Rev.Lett. 79 (1997) 26-30, 1997.
Inspire Record 443170 DOI 10.17182/hepdata.19559

We report on a precision measurement of the neutron spin structure function $g^n_1$ using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014&lt;x&lt;0.7 and 1 (GeV/c)^2&lt; Q^2&lt; 17 (GeV/c)^2, we obtain $\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst)$ at an average $Q^2=5 (GeV/c)^2$. We find relatively large negative values for $g^n_1$ at low $x$. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral $\int^1_0 g^n_1(x)dx$, needed for testing quark-parton model and QCD sum rules.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurement of the proton and deuteron spin structure function g2 and asymmetry A2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 76 (1996) 587-591, 1996.
Inspire Record 400029 DOI 10.17182/hepdata.19584

We have measured proton and deuteron virtual photon-nucleon asymmetries A2p and A2d and structure functions g2p and g2d over the range 0.03<x<0.8 and 1.3<Q2<10 (GeV/c)2 by inelastically scattering polarized electrons off polarized ammonia targets. Results for A2 are significantly smaller than the positivity limit sqrt(R) for both targets. Within experimental precision, the g2 data are well-described by the twist-2 contribution g2WW. Twist-3 matrix elements have been extracted and are compared to theorectical predictions.

5 data tables match query

Proton data measured in the 4.5 degree spectrometer.

Proton data measured in the 7.0 degree spectrometer.

Integrals of G2 from x = 0.03 to 1.0.

More…

Precision measurement of the proton spin structure function g1(p).

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 74 (1995) 346-350, 1995.
Inspire Record 375737 DOI 10.17182/hepdata.19665

We have measured the ratio g1pF1p over the range 0.029<x<0.8 and 1.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized ammonia. An evaluation of the integral ∫01g1p(x, Q2)dx at fixed Q2=3 (GeV/c)2 yields 0.127±0.004(stat)±0.010(syst), in agreement with previous experiments, but well below the Ellis-Jaffe sum rule prediction of 0.160±0.006. In the quark-parton model, this implies Δq=0.27±0.10.

2 data tables match query

No description provided.

Values of G1 computed assuming G1/F1 is independent of Q**2 and using a fixed Q**2 of 3 GeV**2.


Multiplicity and pseudorapidity distributions of charged particles and photons at forward pseudorapidity in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034906, 2006.
Inspire Record 697905 DOI 10.17182/hepdata.98930

We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.

6 data tables match query

(Color Online) $dN/d\eta$ for charged particles and photons for Au + Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV for various event centrality classes.

(Color Online) $dN/d\eta$ for charged particles and photons for Au + Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV for various event centrality classes.

(Color Online) Half width at half maximum of the pseudorapidity distributions ($\eta_{h}$) of charged particles as a function of total charged particle multiplicity ($N_{T}$) normalized to the center of mass energy. The Au + Au collision data are from the PHOBOS [8] experiment and p + p collision data are from the ISR [31] experiments.

More…