NEUTRAL PION PHOTOPRODUCTION ON THE DEUTERON

Imanishi, A. ; Ishii, T. ; Kato, S. ; et al.
Phys.Rev.Lett. 54 (1985) 2497-2500, 1985.
Inspire Record 220232 DOI 10.17182/hepdata.20385

Large-angle cross sections for γd→π0d are systematically measured in the photon energy range between 500 and 1000 MeV. A good fit is obtained by use of a Glauber-model calculation which includes the dibaryon resonances F33(2.26) and G41(2.51), but the fit has an unusual nature in the role of resonance and nonresonance contributions.

1 data table match query

Liquid hydrogen target for final calibration.


Differential Cross-Sections of the Proton Compton Scattering in the Energy Between 450-MeV and 950-MeV

Toshioka, K. ; Chiba, M. ; Kato, S. ; et al.
Nucl.Phys.B 141 (1978) 364-378, 1978.
Inspire Record 120614 DOI 10.17182/hepdata.34955

The differential cross sections of the proton Compton scattering around the second resonance have been measured at a c.m. angle of 90° for incident photon energies between 450 MeV and 950 MeV in steps of 50 MeV, and at an angle of 60° for energies between 600 MeV and 800 MeV. The results show that the peak of the 2nd resonance agrees with that of the pion photoproduction process. We also calculated the proton Compton scattering based on unitarity and fixed- t dispersion relations. The calculation describes well the data of the cross section and the recoil proton polarization.

2 data tables match query

No description provided.

No description provided.


Differential Cross-Sections of the Neutral Pion Photoproduction from Hydrogen in the Energy Range Between 400-MeV and 950-MeV

Yoshioka, M. ; Noda, A. ; Daigo, M. ; et al.
INS-281, 1977.
Inspire Record 118722 DOI 10.17182/hepdata.40545

None

28 data tables match query

No description provided.

No description provided.

No description provided.

More…

PROTON COMPTON SCATTERING AT BACKWARD ANGLES IN THE ENERGY RANGE FROM 400-MeV TO 1050-MEV

Wada, Y. ; Egawa, K. ; Imanishi, A. ; et al.
Nucl.Phys.B 247 (1984) 313-338, 1984.
Inspire Record 215373 DOI 10.17182/hepdata.33842

Differential cross sections of proton Compton scattering have been measured in the energy range between 400 MeV and 1050 MeV at C.M.S. angles of 150° and 160°.

3 data tables match query

No description provided.

No description provided.

No description provided.


DIFFERENTIAL CROSS-SECTIONS FOR PROTON COMPTON SCATTERING AT INCIDENT PHOTON ENERGIES BETWEEN 900-MeV AND 1150-MEV

Ishii, T. ; Egawa, K. ; Imanishi, A. ; et al.
Nucl.Phys.B 254 (1985) 458-474, 1985.
Inspire Record 218918 DOI 10.17182/hepdata.33788

Differential cross sections of proton Compton scattering have been measured in the angular range between 50° and 130° at incident photon energies from 900 MeV to 1150 MeV. A sharp dip in the angular distribution found by a Bonn group at 110° in the photon energy region around 900 MeV is not observed in the present measurement. A new dip-bump structure is found at photon energies above 1050 MeV, which is similar to that for pion-nucleon scattering.

12 data tables match query

No description provided.

No description provided.

No description provided.

More…

Differential Cross-sections of the Proton Compton Scattering in the Resonance Region

Ishii, T. ; Egawa, K. ; Kato, S. ; et al.
Nucl.Phys.B 165 (1980) 189-208, 1980.
Inspire Record 142130 DOI 10.17182/hepdata.34584

Differential cross sections of proton Compton scattering have been measured in the energy range between 375 MeV and 1150 MeV in steps of 25 MeV at c.m. angles of 130°, 100° and 70°. The recoil proton was detected with a magnetic spectrometer. In coincidence with the proton, the scattered photon was detected with a lead-glass Čerenkov counter of the total absorption type.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 048, 2019.
Inspire Record 1720442 DOI 10.17182/hepdata.84818

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single $Z$ boson production, Higgs boson production, and $Z$ boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of $gg\rightarrow ZZ \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

29 data tables match query

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$ in bin of 0$< p_{T}^{4l} <$20 GeV

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$ in bin of 20$< p_{T}^{4l} <$50 GeV

More…

Measurements of the production cross-section for a $Z$ boson in association with $b$-jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 07 (2020) 044, 2020.
Inspire Record 1788444 DOI 10.17182/hepdata.94219

This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 35.6 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one or at least two $b$-jets with transverse momentum $p_\textrm{T}>$ 20 GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on leading-order (LO) or next-to-leading-order (NLO) matrix elements interfaced with a parton-shower simulation and testing different flavour schemes for the choice of initial-state partons are compared with measured cross-sections. The 5-flavour number scheme predictions at NLO accuracy agree better with data than 4-flavour number scheme ones. The 4-flavour number scheme predictions underestimate data in events with at least one b-jet.

15 data tables match query

Measured fiducial cross sections for events with $Z(\rightarrow ll)\ge+1$ b-jets or with $Z(\rightarrow ll)\ge+2$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the Z boson $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the leading b-jet $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

More…

Version 2
Measurement of the $Z(\rightarrow\ell^+\ell^-)\gamma$ production cross-section in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 054, 2020.
Inspire Record 1764342 DOI 10.17182/hepdata.89875

The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.

14 data tables match query

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section vs $E_{\mathrm{T}}^\gamma$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

More…

Version 2
Measurement of Higgs boson decay into $b$-quarks in associated production with a top-quark pair in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 097, 2022.
Inspire Record 1967501 DOI 10.17182/hepdata.114360

The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.

74 data tables match query

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.

More…