Discovery reach for wino and higgsino dark matter with a disappearing track signature at a 100 TeV $pp$ collider

Saito, Masahiko ; Sawada, Ryu ; Terashi, Koji ; et al.
Eur.Phys.J.C 79 (2019) 469, 2019.
Inspire Record 1713045 DOI 10.17182/hepdata.90451

Within the theory of supersymmetry, the lightest neutralino is a dark matter candidate and is often assumed to be the lightest supersymmetric particle (LSP) as well. If the neutral wino or higgsino is dark matter, the upper limit of the LSP mass is determined by the observed relic density of dark matter. If the LSP is a nearly-pure neutral state of the wino or higgsino, the lightest chargino state is expected to have a significant lifetime due to a tiny mass difference between the LSP and the chargino. This article presents discovery potential of the 100 TeV future circular hadron collider (FCC) for the wino and higgsino dark matter using a disappearing-track signature. The search strategy to extend the discovery reach to the thermal limits of wino/higgsino dark matter is discussed with detailed studies on the background rate and the reference design of the FCC-hadron detector under possible running scenarios of the FCC-hadron machine. A proposal of modifying the detector layout and several ideas to improve the sensitivity further are also discussed.

13 data tables match query

One of three barrel inner-tracker layouts considered in this study; the default layout $\#$1. The contour drawn behind the layouts shows the number of chargino decays in 3 TeV wino signal events with 30 ab$^{-1}$ at a given position. The analysis considers the region $|\eta|<1$, denoted by the dotted lines.

Leading jet $p_{T}$ distributions after removing events containing isolated leptons with 30 ab$^{-1}$ at $\sqrt{s}=100$ TeV. The SM backgrounds from $W/Z$+jets and top production processes are shown as filled histograms. Also shown as dashed (dotted) line is the 3 (1) TeV wino (higgsino) signal scaled up by a factor 1000.

$E_{\text{T}}^{\text{miss}}$ distributions after removing events containing isolated leptons with 30 ab$^{-1}$ at $\sqrt{s}=100$ TeV. The SM backgrounds from $W/Z$+jets and top production processes are shown as filled histograms. Also shown as dashed (dotted) line is the 3 (1) TeV wino (higgsino) signal scaled up by a factor 1000.

More…

Bulk Properties of the System Formed in Au+Au Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 101 (2020) 024905, 2020.
Inspire Record 1748776 DOI 10.17182/hepdata.103857

We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.

42 data tables match query

The $p_{T}$ spectra of proton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicated in the legend

The $p_{T}$ spectra of antiproton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend

The $p_{T}$ spectra of $\pi^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend

More…

Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

42 data tables match query

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…