Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the LHC

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 90 (2014) 054901, 2014.
Inspire Record 1300038 DOI 10.17182/hepdata.65710

Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a $|\Delta \eta|$ gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of $v_{2}\{4\}$ to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find $v_{2}\{4\} \simeq v_{2}\{6\}\neq 0$ which is indicative of a Bessel-Gaussian function for the $v_{2}$ distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a $|\Delta\eta| > 1.4$ gap is placed.

42 data tables match query

No description provided.

No description provided.

No description provided.

More…

Charge correlations using the balance function in Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 723 (2013) 267-279, 2013.
Inspire Record 1211186 DOI 10.17182/hepdata.60298

In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this Letter, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity ($\Delta\eta$) and azimuthal angle ($\Delta\varphi$) in Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in $\Delta\varphi$ but fails to describe the correlations in $\Delta\eta$. A thermal blast-wave model incorporating local charge conservation and tuned to describe the $p_{\rm T}$ spectra and v$_2$ measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with $\sqrt{s_{\rm NN}}$: the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in $\Delta\eta$ and $\Delta\varphi$ with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy--ion collision.

8 data tables match query

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 0-5%. Also shown in the second column is the result from the mixed data set.

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 30-40%.

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 70-80%.

More…

Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\snn=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 719 (2013) 18-28, 2013.
Inspire Record 1116150 DOI 10.17182/hepdata.62177

The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range $|\eta|<0.8$ at different collision centralities and as a function of transverse momentum, $p_{\rm T}$, out to $p_{\rm T}=20$ GeV/$c$. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for $p_{\rm T}>8$ GeV/$c$. The small $p_{\rm T}$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_{\rm T}=8$ GeV/$c$. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_{\rm T}=8$ GeV/$c$ indicating that the particle type dependence persists out to high $p_{\rm T}$.

16 data tables match query

Elliptic flow (v2) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

Elliptic flow (v2) estimated with four-particle cumulants measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

Triangular flow (v3) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

More…

Net-Charge Fluctuations in Pb-Pb collisions at \surds_NN = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 110 (2013) 152301, 2013.
Inspire Record 1123802 DOI 10.17182/hepdata.60476

We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at LHC are smaller compared to the measurements at the Relativistic heavy Ion Collider (RHIC), and as such, closer to what has been theoretically predicted for the formation of Quark-Gluon Plasma (QGP).

7 data tables match query

The measured NU(+-DYN) as a function of the centrality of the collisions, expressed as the number of participating nucleons, for two values of midrapidity range.

NU(+-DYN), corrected for charge conservation and finite acceptance effects, as a function of the centrality of the collisions, expressed as the number of participating nucleons, for two values of midrapidity range.

The measured and corrected NU(+-DYN) in P P collisions for two values of midrapidity range.

More…

Exclusive $\rho^0$ Meson Photoproduction with a Leading Neutron at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 76 (2016) 41, 2016.
Inspire Record 1387751 DOI 10.17182/hepdata.74219

A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.

11 data tables match query

The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.

Differential photoproduction cross sections ${\rm d}\sigma_{\gamma p}/{\rm d}x_L$ for the exclusive process $\gamma p \to \rho^0 n \pi^+$ in two regions of neutron transverse momentum and $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.

Double differential photoproduction cross sections ${\rm d^2}\sigma_{\gamma p}/{\rm d}x_L{\rm d}p_{T,n}^2$ in the range $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.

More…

Combination of Measurements of Inclusive Deep Inelastic $e^{\pm}p$ Scattering Cross Sections and QCD Analysis of HERA Data

The H1 & ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 75 (2015) 580, 2015.
Inspire Record 1377206 DOI 10.17182/hepdata.68951

A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.

7 data tables match query

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 318$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 300$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 251$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

More…

Deviation from quark-number scaling of the anisotropy parameter v_2 of pions, kaons, and protons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 85 (2012) 064914, 2012.
Inspire Record 1093596 DOI 10.17182/hepdata.141645

Measurements of the anisotropy parameter v_2 of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p_T, and transverse kinetic energy KE_T at midrapidity (|\eta|<0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. Pions and protons are identified up to p_T = 6 GeV/c, and kaons up to p_T = 4 GeV/c, by combining information from time-of-flight and aerogel Cherenkov detectors in the PHENIX Experiment. The scaling of v_2 with the number of valence quarks (n_q) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KE_T/n_q in noncentral Au+Au collisions (20--60%), but this scaling remains valid in central collisions (0--10%).

21 data tables match query

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

More…

Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables match query

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…

Long-range pseudorapidity dihadron correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 747 (2015) 265-271, 2015.
Inspire Record 1346551 DOI 10.17182/hepdata.72303

Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.

23 data tables match query

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

More…

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

31 data tables match query

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=7.7$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=11.5$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=19.6$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

More…