The polarization of the recoil proton in the photoproduction process γ+p→p+π0 has been measured with the beam of the Frascati electrosynchrotron at an angle of 90° in the c.m. system, in the energy interval (500÷900) MeV. A counter technique has been used, and the polarization of the proton was revealed by the left to right asymmetry in the elastic scattering of the protons in a carbon target. The experimental results are given in Table III and in Fig. 10. A definite polarization is found, always of the same sign and equal to −0.4±.14, −0.63±.23, −0.6±.25, −0.57±.12, −0.38±.09, −0.5±.17, −0.5±.22 at the γ-ray energies of 560, 610, 650, 700, 750, 800, 850 MeV respectively. The discussion of these experimental results, together with the data of angular dstributions, allows to conclude that they are in agreement with the hypothesis that the second resonance is a transition (E 1,d 3/2) and the third one is a transition (E 2,f 3/2).
Cross sections for the photoproduction of neutral pions have been measured at the 1.1-GeV Frascati electron synchrotron for bombarding photon energies k between 400 and 800 MeV and for π0 c.m. angles of θπ*=90∘, 120∘, and 135∘. The main feature of the experiment is good resolution in incident photon energy. The results are in good agreement with the existing theories in the energy range of 450 to 550 MeV. The cross sections exhibit a smooth behavior as a function of energy for k=400−600 MeV. No immediate evidence is found of a contribution of the P11 resonance. An anomaly at the limit of statistical significance appears for k≃700−740 MeV, indicating a possible structure of the so-called second resonance. We attempt to interpret the observed anomaly as a reflection of the sharp opening of the η production channel (η cusp effect).
With an apparatus slightly improved with respect to a previous one we have studied multihadronic production at the Adone e + e − storage ring up to a maximum center of mass energy of 3 GeV.
We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.
We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.
We present a measurement of the cross section for the reaction e + e − → e + e − π + π − π + π − at SPEAR. This channel is found to be large and dominated by the process γγ → ϱ 0 ϱ 0 → π + π − π + π − . The cross section, which is small just above the four-pion threshold, exhibits a large enhancement near the ϱ 0 ϱ 0 threshold.
The total cross sections for the three γp → Nππ reactions have been measured for photon energies from 400 to 800 MeV. The γ p → p π 0 π 0 and γ p → n π + π 0 cross sections have never been measured before while the γ p → p π + π − results are much improved compared to earlier data. These measurements were performed with the large acceptance hadronic detector DAPHNE, at the tagged photon beam facility of the MAMI microtron in Mainz.
Result of cross section measurements for the reaction π − p → π − π + n are presented. They cover a range of incident pion momenta between 295 and 450 MeV/ c . It is the first time that the cross section has been measured so close to threshold. The experiment was performed with Omicron, a large-solid-angle spectrometer, which enables a measurement of the full set of kinematic variables. In the region of overlap there is a good agreement with other experiments. The extracted value for the chiral-symmetry-breaking parameter ξ is seen to be largely extrapolition dependent but the measured value of -0.5±0.8 leaves Weinberg's prediction of ξ =0 the only remaining choice.
An analysis has been performed of neutrino and antineutrino interactions with protons and neutrons in a deuterium bubble chamber. The interactions under study are quasielastic neutrino-neutron scattering and one-, two- and three-pion production reactions. Results are presented on cross sections, effective mass distributions, resonance production, momentum transfer distributions and coefficients of the decay angular distributions. Where possible, comparisons are made with existing theoretical models and predictions.
Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.
Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.
We investigate the four-photon final state produced in γγ colissions. In the π 0 π 0 channel we observe f(1270) production with predominantly helicity 2 and measure a partial width Γ γγ 2.9 +0.6 −0.4 ± keV (independent of assumptions on the helicity). We observe A 2 (1310) production in the π 0 η channel and find a partial width Γ γγ = 0.77 ± 0.18 ± 0.27 KeV (assuming helicity 2). We give an upper limit for f ≈ ηη .
Differential cross sections for Compton scattering by the proton have been measured in the energy interval between 200 and 500 MeV at scattering angles of θ cms = 75° and θ cms = 90° using the CATS, the CATS/TRAJAN, and the COPP setups with the Glasgow Tagger at MAMI (Mainz). The data are compared with predictions from dispersion theory using photo-meson amplitudes from the recent VPI solution SM95. The experiment and the theoretical procedure are described in detail. It is found that the experiment and predictions are in agreement as far as the energy dependence of the differential cross sections in the Δ-range is concerned. However, there is evidence that a scaling down of the resonance part of the M 1+ 3 2 photo-meson amplitude by (2.8 ± 0.9)% is required in comparison with the VPI analysis. The deduced value of the M 1+ 3 2 - photoproduction amplitude at the resonance energy of 320 MeV is: |M 1+ 3 2 | = (39.6 ± 0.4) × 10 −3 m π + −1 .
The reaction π+p→π+π+n was studied in the vicinity of the reaction threshold at ten incident pion beam momenta from 297 MeV/c to 480 MeV/c. From data angular distributions, invariant mass spectra and integrated cross-sections were deduced. The chiral symmetry breaking parameter as determined by this reaction equals to ξ=1.56±0.26±0.39, where the first error is experimental, while the latter reflects the uncertainty in the ansatz used in the extrapolation to the reaction threshold. A comparison with the other reaction channels of the reaction πp→ππN indicates that a single parameter (ξ) is not sufficient to describe low energy ππ interactions.
The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
New results are presented on the differential cross-section for the reaction α+p→π0+p, at energies between 600 and 1000 MeV, and c.m. pion angles Θ*π=40° and Θ*π=60°. The present data, together with that at Θ*π=40° already published (11), show an angle-independent position of the second resonance at about 750 MeV. Rather flat angular distributions in the forward c.m. hemisphere are also favoured by these data. On comparing the cross-sections obtained when detecting both the neutral pion and the recoil proton, and when detecting only the latter, estimates of the background of «ghost protons» are obtained, in agreement with the empirical curve proposed in ref. (11).