Neutral pion photoproduction has been measured from 550 to 1500 MeV with the GRAAL facility, located at the ESRF in Grenoble. Differential cross-section and beam asymmetry have been measured over a wi
Measured differential angular distribution for incident photon energy 555 Mev.
Measured beam asymmetries for incident photon energy 551 Mev.
None
No description provided.
No description provided.
No description provided.
A description is given of the experimental techniques and investigation results of the parameters Σ , T , P for the γ p→p π 0 reaction using linear polarized photons and a polarized proton target. The measurements have been made in the photon energy range 280–450 MeV at pion c.m. angles between 60° and 135°. The new experimental data are used in an energy-independent channel multipole analysis without the Watson theorem.
No description provided.
The polarization of the recoil proton in neutral single-pion photoproduction from hydrogen, γ+p→p+π0, has been measured for pion center-of-mass angles near 90° at 7 photon energies from 450 to 900 MeV. The polarization rises to a maximum of 0.58 near 600 MeV and is still 0.42 at 900 MeV. The sign of the polarization is negative in the sense of k×q, where k is the photon momentum and q is the pion momentum. The measured values are given as functions of laboratory photon energy and c.m. pion angle as follows: 450 MeV, 109°, -0.16±0.14; 525 MeV, 84°, -0.36±0.19; 585 MeV, 86°, -0.58±0.15; 660 MeV, 77°, -0.51±0.17; 755 MeV, 76°, -0.55±0.15; 810 MeV, 89°, -0.45±0.17; 895 MeV, 90°, -0.42±0.16. The recoil protons were momentum-analyzed with a magnetic spectrometer. Nuclear emulsion was used as scatterer and detector. The emulsion technique is discussed in detail. The number of individual scatterings in emulsion used for each measurement varied between 750 and 1000.
No description provided.
Measurements of π0 photoproduction have been made at 235, 285, 335, and 435 MeV, using a beam of polarized x rays. Using a calculated value of polarization, an analysis is made which indicates a possible need for γ, ρ, π, or γ, ω, π coupling. The polarization calculations are checked by measurements made as a function of photon production angle at 335 MeV.
No description provided.
The polarized target asymmetry for γ n→ π − p was measured over the second resonance region from 0.55 to 0.9 GeV at pion c.m. angles between 60° and 120°. A double-arm spectrometer was used with a deuterated butanol target to detect both the pion and the proton, thus considerably improving the data quality. Including the new data in the amplitude analysis, the radiative decay widths of three resonances were determined more accurately than before. The results are compared with various quark models.
PHOTON ENERGY IS IN THE NEUTRON REST FRAME.
PHOTON ENERGY IS IN THE NEUTRON REST FRAME.
PHOTON ENERGY IS IN THE NEUTRON REST FRAME.
Measurement of secondary-proton polarization from the reaction γ p → π 0 p have been performed in the proton energy range 500–800 MeV at c.m. pion emission angles 100°, 120°, 140°. The experiment was carried out using an optical spark chamber telescope at the output of the magnetic spectrometer. The obtained experimental data are included in a Walker-type analysis in order to verify the parameters of the resonances P 11 (1470), D 13 (1570) and S 11 (1535). Proton polarization in the reaction γ p → π 0 p was measured for a photon energy of 450 MeV at a c.m. pion emission angle of 105° using photons linearly polarized at 45° to the reaction plane. A liquid hydrogen target in the field of a superconducting magnet was used for the separation of the P x ′ and P z ′ components of the secondary-proton polarization vector.
No description provided.
No description provided.
No description provided.
The recoil proton polarization of the reaction γ p → π 0 p was measured at a c.m. angle of 100° for incident photon energies between 451 and 1106 MeV, and at an angle of 130° for energies from 400 to 1142 MeV. One photon, decayed from a π 0 meson, and a recoil proton were detected in coincidence. Two kinds of polarization analyzer were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization, respectively. The data given by the two polarimeter systems are in good agreement. Results are compared with recent phenomenological analyses. From the comparison between the present data and the polarized target data, the invariant amplitude A 3 can be estimated to be small.
RESULT WITH THE CARBON POLARIMETER.
RESULT WITH THE CARBON POLARIMETER.
The asymmetry ratio for the process γ + p → n + π + by linearly polarized γ rays are reported for E γ = 200 − 400 MeV and for θ (production angle of π in the c.m. system) = 90°. The experimental results are compared with some recent theoretical predictions.
No description provided.
The asymmetry of the cross section for π + photoproduction from a polarized butanol target has been measured at a c.m. angle 90° and photon energies between 300 and 900 MeV by a single-arm spectrometer detecting positive pions. Our results indicate that the asymmetry has clear positive peaks at photon energies 400 and 700 MeV with a deep valley at about 600 MeV. The general feature of the results is well reproduced by the phenomenological analyses made by Walker and ourselves; however, the best fit to the polarized target asymmetry data seems to give a somewhat different set of parameters from that given by Walker.
No description provided.