The reaction gamma p -> p pi0 gamma' has been measured with the Crystal Ball / TAPS detectors using the energy-tagged photon beam at the electron accelerator facility MAMI-B. Energy and angular differential cross sections for the emitted photon gamma' and angular differential cross sections for the pi0 have been determined with high statistics in the energy range of the Delta+(1232) resonance. Cross sections and the ratio of the cross section to the non-radiative process gamma p -> p pi0 are compared to theoretical reaction models, having the anomalous magnetic moment kappa_Delta+ as free parameter. As the shape of the experimental distributions is not reproduced in detail by the model calculations, currently no extraction of kappa_Delta+ is feasible.
Total cross section for the background reaction GAMMA P --> P PI0.
Total cross section for the background reaction GAMMA P --> P PI0 PI0.
Differential cross section as a function of the emitted photon energy for the reaction GAMMA P --> P PI0 GAMMA at beam energy 450 MeV.
The π−p charge-exchange analyzing power has been measured from 547 to 687 MeV/c in the center-of-mass angular range -0.9≤cosθ̃π≤0.9 using a transversely polarized target. The recoil neutron was detected in coincidence with a photon from π0 decay. The results are compared with the three recent partial-wave analyses (PWA’s); the VPI analysis is most consistent with our measured distributions except at 687 MeV/c where no PWA agrees with our data. The charge-exchange transversity cross sections are evaluated using the differential cross sections of Borcherding et al. These transversity cross sections are used in conjunction with earlier π±p data by our group to test the triangle inequalities which are a model-independent test of isospin invariance. Our data satisfy these inequalities everywhere; in contrast, Abaev et al. have reported a violation of more than 5 standard deviations at 685 MeV/c.
No description provided.
The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.
We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.
Total cross section from threshold to 750 MeV. Only statistical errors are given in the table.
Differential cross sections for π−p→γn have been determined from 427 to 625 MeV/c, mainly at 90° and 110° c.m. The data were obtained by combining measurements of the Panofsky ratio in flight with known charge-exchange cross sections. The results are compared with γn→π−p data derived from γd experiments; the difference is typically 30%. The radiative decay amplitudes of neutral πN resonances are therefore uncertain by at least 30%.
Charge exchange cross section from PWA.
PI- P --> GAMMA N cross section.
GAMMA N --> PI- P cross section calculated using detailed balance.
Differential cross sections for π ± p→ π ± p have been measured at P π between 378 and 687 MeV / c at 9 angles in the range −0.8⩽cos θ c.m. ⩽0.6. Scattered pions and recoil protons were detected in coincidence using scintillation counter hodoscopes. For almost all of the data the statistical and normalization uncertainties are each less than 2%. Our measurements are compared with existing data and the results of recent partial wave analyses.
No description provided.
No description provided.
No description provided.
The left-right asymmetry of π−p→γn has been measured using a transversely polarized target at seven pion momenta from 301 to 625 MeV/c, mostly at photon angles of 90° and 110° c.m. The final-state γ and neutron were detected in coincidence. Neutrons were recorded in two arrays of plastic scintillators and the γ's in two matching sets of lead-glass counters. The results are compared with the predictions from the two most recent single-pion photoproduction partial-wave analyses. The agreement with the analysis of Arai and Fujii is poor, casting some doubt on the correctness of their values for the radiative decay amplitude of the neutral Roper resonance which are used widely. The agreement is much better with the results of the VPI analysis. Also, a comparison is made with the recoil-proton polarization data from the inverse reaction measured at 90° with a deuterium target. It reveals substantial discrepancies, indicating the shortcomings of the deuterium experiments for neutron target experiments. Our data are also compared with several bag-model calculations.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for π+p and π−p elastic scattering at 378, 408, 427, 471, 509, 547, 586, 625, 657, and 687 MeV/c in the angular range -0.8<cosθc.m.<0.8. The scattered pion and recoil proton were detected in coincidence using scintillation-counter hodoscopes. A liquid-hydrogen target was used except for measurements at forward angles, in which a CH2 target was used. Statistical uncertainties in the data are typically less than 1%. Systematic uncertainties in acceptance and detection efficiency are estimated to be 1%. Absolute normalization uncertainties are 2–3 % for most of the data. The measurements are compared with previous data and with the results of recent partial-wave analyses. The data are fit with Legendre expansions from which total elastic cross sections are obtained.
Normalisation uncertainty = 4.1 pct.
Normalisation uncertainty = 2.1 pct.
Normalisation uncertainty = 3.6 pct.
Accurate measurements of the left-right asymmetry in π−p→γn at pπ=427−625 MeV/c with a transversely polarized target are reported. Results are compared with the predictions from the Arai and Fujii single-pion photoproduction partial-wave analysis and with data on the inverse process measured with a deuterium target. The agreement is poor, casting doubt on the correctness of the value for the radiative-decay amplitude of the neutral Roper resonance now in use.
No description provided.
No description provided.
No description provided.
The analyzing power for π−p→π0n has been measured at five incident momenta from 547 to 687 MeV/c using a transversely polarized target. Data were obtained with scintillation counters at 10 angles simultaneously covering the range −0.9≤cosθc.m.π≤0.9. Our results and those of Kim et al. are used for a model-independent test of isospin invariance which is based on the triangle inequalities applied to the transversity-up as well as the transversity-down cross sections. No evidence is found of isospin violation.
No description provided.