The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.
Differential cross sections of proton Compton scattering have been measured in the energy range between 400 MeV and 1050 MeV at C.M.S. angles of 150° and 160°.
No description provided.
No description provided.
No description provided.
Results are presented on the elastic scattering of photons by protons. The incident photon energy ranged from 0.55 GeV to 4.5 GeV, and the four-momentum transfer t ranged from 0.12 to 1.0 (GeV/c)2. The data at large angles, 60°<θ*<115°, are characterized by a pronounced excitation of the D13(1518) resonance, a shoulder in the 1688-MeV mass region, and a precipitous drop thereafter in the cross section as a function of incident energy. The low-t data are characterized by a diffraction slope of 5 (GeV/c)−2. The data are inconsistent with the predictions of the vector-dominance model if the latter is restricted to ρ0, ω, and φ vector mesons.
No description provided.
Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.
Axis error includes +- 2./2. contribution (RANDOM ERROR).
Axis error includes +- 2./2. contribution (RANDOM ERROR).
Axis error includes +- 2./2. contribution (RANDOM ERROR).
This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.
No description provided.
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured to determine the proton electromagnetic form factors at squared four-momentum transfers q 2 between 10 and 50 fm −2 . At these values of q 2 we measured angular distributions between 25° and 110° and in addition at 25° and 35° cross sections for q 2 from 2 to 20 fm −2 using the external electron beam of the Bonn 2.5 GeV electron synchrotron. Our results confirm deviations from the scaling law.
Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).
This paper reports the results of an experiment measuring the parameters of various electroproduction reactions for a range in the electroproduction variables 0.7<Q2<4 GeV2 and 2<W2<16 GeV2. This report is limited to nondiffractive exclusive channels, with detailed results regarding the πΔ final states, statistically limited results for KΛ final states, and upper limits on the production of a number of event topologies containing a single unseen neutral particle.
No description provided.
Elastic electron-proton scattering cross sections were measured at backward angles (80°-90°) in the laboratory for four-momentum transfers between 7 F−2 and 45 F−2. Experimental errors range from 3.1% to 5.3%, including a systematic error estimated to be 1.9% added in quadrature. Electric and magnetic form factors are computed from all the recent data in this q2 range, with allowance made for possible normalization differences. The results show a deviation from the scaling law.
No description provided.
No description provided.
None
No description provided.
Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.
The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.