Polarization of the Recoil Proton from pi0 Photoproduction in Hydrogen

Maloy, J.O. ; Peterson, V.Z. ; Salandin, G.A. ; et al.
Phys.Rev. 139 (1965) B733-B746, 1965.
Inspire Record 944960 DOI 10.17182/hepdata.26657

The polarization of the recoil proton in neutral single-pion photoproduction from hydrogen, γ+p→p+π0, has been measured for pion center-of-mass angles near 90° at 7 photon energies from 450 to 900 MeV. The polarization rises to a maximum of 0.58 near 600 MeV and is still 0.42 at 900 MeV. The sign of the polarization is negative in the sense of k×q, where k is the photon momentum and q is the pion momentum. The measured values are given as functions of laboratory photon energy and c.m. pion angle as follows: 450 MeV, 109°, -0.16±0.14; 525 MeV, 84°, -0.36±0.19; 585 MeV, 86°, -0.58±0.15; 660 MeV, 77°, -0.51±0.17; 755 MeV, 76°, -0.55±0.15; 810 MeV, 89°, -0.45±0.17; 895 MeV, 90°, -0.42±0.16. The recoil protons were momentum-analyzed with a magnetic spectrometer. Nuclear emulsion was used as scatterer and detector. The emulsion technique is discussed in detail. The number of individual scatterings in emulsion used for each measurement varied between 750 and 1000.

1 data table match query

No description provided.


The Measurement of Polarized Target Asymmetry on gamma p --> pi0 p Below 1-GeV

Fukushima, M. ; Horikawa, N. ; Kajikawa, R. ; et al.
Nucl.Phys.B 136 (1978) 189-200, 1978.
Inspire Record 119548 DOI 10.17182/hepdata.35100

The polarized target asymmetry in the reaction γ p → π 0 p has been measured at c.m. angles of 30°, 80°, 105° and 120° for incident photon energies below 1 GeV. Two decay photons from π 0 were detected in coincidence at 30°, and at the other angles recoil protons and single photons from π 0 were detected. The results are compared with recent phenomenological analyses.

1 data table match query

No description provided.


The Measurement of Polarized Target Asymmetry on gamma p --> pi+ n Below 1.02-GeV

Fukushima, M. ; Horikawa, N. ; Kajikawa, R. ; et al.
Nucl.Phys.B 130 (1977) 486-504, 1977.
Inspire Record 119547 DOI 10.17182/hepdata.35243

The polarized target asymmetry for the process γ p → π + n has been measured for incident photon energies below 1.02 GeV over a range of c.m. angles from 40° to 160°. π + mesons from a polarized butanol target were detected by a magnetic spectrometer. The results are compared with predictions given by existing analyses. A tentative interpretation of the data is performed, and a larger contribution of S-wave resonances is suggested. The photocouplings of dominant resonances were hardly changed by the inclusion of new data and they seem to be almost uniquely determined.

1 data table match query

No description provided.


Polarized Target Asymmetry in $\pi^+$ Photoproduction Between 0.3-GeV and 1.0-GeV at 130°

Feller, P. ; Fukushima, M. ; Horikawa, N. ; et al.
Nucl.Phys.B 102 (1976) 207, 1976.
Inspire Record 90055 DOI 10.17182/hepdata.36079

The polarized target asymmetry for γ + p → π + + n was measured at c.m. angles around 130° for the energy range between 0.3 and 1.0 GeV. A magnetic spectrometer system was used to detect π + mesons from the polarized butanol target. The data show two prominent positive peaks at 0.4 and 0.8 GeV and a deep minimum at 0.6 GeV. These features are well reproduced by the phenomenological analysis made by us.

1 data table match query

No description provided.


Angular dependence of the recoil proton polarization from the reaction $\gamma p \to \pi^0 p$ for photon energies between 360-MeV and 1200-MeV

Blum, P. ; Brinckmann, P. ; Brockmann, R. ; et al.
BONN-PI-1-105, 1970.
Inspire Record 1085812 DOI 10.17182/hepdata.70500

None

1 data table match query

No description provided.


Measurement of the polarization parameter P in elastic π+p scattering at 335, 370, and 410 MeV

Bekrenev, V.S. ; Beloglazov, Yu.A. ; Gaditskii, V.G. ; et al.
JETP Lett. 35 (1982) 148, 1982.
Inspire Record 1408359 DOI 10.17182/hepdata.70446

None

3 data tables match query

No description provided.

No description provided.

No description provided.


Polarisation of recoil neutrons from single-pion photoproduction off protons in the resonance region

Hahn, U. ; Wallraff, W. ; Weingarten, W. ;
BONN-PI-1-143, 1971.
Inspire Record 1498199 DOI 10.17182/hepdata.75407

None

1 data table match query

No description provided.


Measurement of the polarization of the backscattered neutron from the reaction gamma p -> pi n in the region of the second resonance

Wallraff, Wolfgang ;
BONN-PI-1-162, 1972.
Inspire Record 1498200 DOI 10.17182/hepdata.75411

None

1 data table match query

No description provided.


ASYMMETRY MEASUREMENTS IN PION PHOTOPRODUCTION BY POLARIZED PHOTONS IN THE ENERGY RANGE FROM 250-MeV TO 600-MeV

Antufev, Yu.P. ; Agranovich, V.L. ; Ganenko, V.B. ; et al.
PRINT-70-2307, 1970.
Inspire Record 1105361 DOI 10.17182/hepdata.75432

None

1 data table match query

No description provided.


Analyzing power for pi- p charge exchange in the backward hemisphere from 301-MeV/c to 625-MeV/c and a test of pi N partial wave analyses

Kim, G.J. ; Arends, J. ; Engelage, J. ; et al.
Phys.Rev.D 41 (1990) 733-743, 1990.
Inspire Record 301242 DOI 10.17182/hepdata.22935

The analyzing power of π−p→π0n has been measured for pπ=301−625 MeV/c with a transversely polarized target, mainly in the backward hemisphere. The final-state neutron and a γ from the π0 were detected in coincidence with two counter arrays. Our results are compared with predictions of recent πN partial-wave analyses by the groups of Karlsruhe-Helsinki, Carnegie-Mellon University-Lawrence Berkeley Laboratory (CMU-LBL), and Virginia Polytechnic Institute (VPI). At the lower incident energies little difference is seen among the three analyses, and there is excellent agreement with our data. At 547 MeV/c and above, our data strongly favor the VPI phases, and disagree with Karlsruhe-Helsinki and CMU-LBL analyses, which are the source of the πN resonance parameters given in the Particle Data Group table.

3 data tables match query

Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).

Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).

Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).