Compton scattering by the proton through Theta(CMS) = 75-degrees and 90-degrees in the Delta resonance region

Hünger, A ; Peise, J ; Robbiano, A ; et al.
Nucl.Phys.A 620 (1997) 385-416, 1997.
Inspire Record 458618 DOI 10.17182/hepdata.36349

Differential cross sections for Compton scattering by the proton have been measured in the energy interval between 200 and 500 MeV at scattering angles of θ cms = 75° and θ cms = 90° using the CATS, the CATS/TRAJAN, and the COPP setups with the Glasgow Tagger at MAMI (Mainz). The data are compared with predictions from dispersion theory using photo-meson amplitudes from the recent VPI solution SM95. The experiment and the theoretical procedure are described in detail. It is found that the experiment and predictions are in agreement as far as the energy dependence of the differential cross sections in the Δ-range is concerned. However, there is evidence that a scaling down of the resonance part of the M 1+ 3 2 photo-meson amplitude by (2.8 ± 0.9)% is required in comparison with the VPI analysis. The deduced value of the M 1+ 3 2 - photoproduction amplitude at the resonance energy of 320 MeV is: |M 1+ 3 2 | = (39.6 ± 0.4) × 10 −3 m π + −1 .

1 data table match query

No description provided.


Structure of the Proton

Chambers, E.E. ; Hofstadter, R. ;
Phys.Rev. 103 (1956) 1454-1463, 1956.
Inspire Record 945003 DOI 10.17182/hepdata.26939

The structure and size of the proton have been studied by means of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, and 550 Mev. The range of laboratory angles examined has been 30° to 135°. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at (0.77±0.10) ×10−13 cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70×10−13 cm or an exponential with rms radius 0.80×10−13 cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.

1 data table match query

In the experiment just relative cross sections were measured. The absolute values were ascribed at each energy after multiplying experimental data by a co nstant factor to obtain the best fit with theory assuming the diffuse proton model with charge and magnetic moment rms radii 0.08 fm.. The values in the table are extracted from the graphs (see figs. 6 - 9) byZOV.


Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

3 data tables match query

No description provided.

No description provided.

No description provided.


FORWARD ELECTROPRODUCTION OF CHARGED PIONS FROM DEUTERONS AT Q**2 = 1.0-GeV/c**2

Morris, J.V. ; Darvill, D.C. ; Davenport, M. ; et al.
Phys.Lett.B 86 (1979) 211-214, 1979.
Inspire Record 140702 DOI 10.17182/hepdata.27310

The ratio of π - to π + electroproduction cross sections from deuterium has been measured in the resonance region, at a four-momentum transfer squared close to −1.0 (GeV/ c ) 2 . Results in the forward direction are presented and a comparison is made with predictions based on SU(6) W and the Melosh transformation.

1 data table match query

No description provided.


Inclusive K0(s) Production in e+ e- Annihilation at Energies of 3.6-GeV to 5.0-GeV

The PLUTO collaboration Burmester, J. ; Criegee, L. ; Dehne, H.C. ; et al.
Phys.Lett.B 67 (1977) 367-370, 1977.
Inspire Record 118873 DOI 10.17182/hepdata.27568

We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.

1 data table match query

No description provided.


Coincidence electroproduction of single neutral pions in the resonance region at q 2 = 0.5 (GeV/ c ) 2

Latham, A. ; Allison, J. ; Booth, I. ; et al.
Nucl.Phys.B 156 (1979) 58-92, 1979.
Inspire Record 1392686 DOI 10.17182/hepdata.836

Data are presented for the reaction ep → ep π 0 at a nominal four-momentum transfer squared of 0.5 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Details are given of the experimental method and the results are given for isobar masses in the range 1.19 – 1.73 GeV/ c 2 .

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Pi- p ELASTIC SCATTERING IN THE CMS ENERGY RANGE 1400-MeV TO 2000-MeV

Brody, A.D. ; Cashmore, R.J. ; Kernan, A. ; et al.
Phys.Rev.D 3 (1971) 2619, 1971.
Inspire Record 60976 DOI 10.17182/hepdata.4110

Total and differential cross sections for π−p elastic scattering are presented at 35 energies between 1400 and 2000 MeV.

1 data table match query

No description provided.


Backward-angle electron-proton elastic scattering and proton electromagnetic form-factors

Price, L.E. ; Dunning, J.R. ; Goitein, M. ; et al.
Phys.Rev.D 4 (1971) 45-53, 1971.
Inspire Record 67836 DOI 10.17182/hepdata.23074

Elastic electron-proton scattering cross sections were measured at backward angles (80°-90°) in the laboratory for four-momentum transfers between 7 F−2 and 45 F−2. Experimental errors range from 3.1% to 5.3%, including a systematic error estimated to be 1.9% added in quadrature. Electric and magnetic form factors are computed from all the recent data in this q2 range, with allowance made for possible normalization differences. The results show a deviation from the scaling law.

2 data tables match query

No description provided.

No description provided.


Measurements on the Differential Cross-Section of the pi0 Photoproduction on Hydrogen

Almehed, S. ; Von Dardel, G. ; Jarlskog, G. ; et al.
Phys.Scripta 13 (1976) 321-326, 1976.
Inspire Record 115713 DOI 10.17182/hepdata.19325

The differential cross section for photoproduction of π° on hydrogen has been measured in a photon energy range of 560-690 MeV and for production angles in the interval 90°-105° in the centre of mass system. The experiment detects the recoil proton and a π°-decay photon in coincidence, using optical spark chambers and a lead glass Cerenkov counter. Presented cross sections, based on 35 000 events recorded on film, are in good agreement with recent phase shift analysis.

2 data tables match query

No description provided.

No description provided.


Limit on the B ---> u Coupling from Semileptonic B Decay

The CLEO collaboration Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
Phys.Rev.Lett. 52 (1984) 1084, 1984.
Inspire Record 199380 DOI 10.17182/hepdata.20474

We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.

2 data tables match query

No description provided.

No description provided.