Data are presented for the reaction ep → ep π 0 at a nominal four-momentum transfer squared of 0.5 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Details are given of the experimental method and the results are given for isobar masses in the range 1.19 – 1.73 GeV/ c 2 .
No description provided.
No description provided.
Backward cross sections.
The differential cross sections for γ p→ π + n from hydrogen and the π − π + ratios from deuterium were measured at nine c.m. angles between 30° and 150° for laboratory photon energies between 260 and 800 MeV. A magnetic spectrometer with three layers of scintillation hodoscope was used to detect charged π mesons. The cross section for γ n→ π − p was obtained as a product of d σ d Ω (γ p →π + n ) and the π − π + ratio. The overall features in the cross sections of the two reactions, γ p→ π + n and γ n→ π − p, and in the ratios, π − π + , agree with predictions by Moorhouse, Oberlack and Rosenfeld, and Metcalf and Walker. An investigation of the possible existence of an isotensor current was made and a negative result was found. In detailed balance comparison with the new results on the inverse reaction π − p→ γ n, no apparent violation of time-reversal invariance was observed.
No description provided.
The\(e^ +e^ -\to K_s^0 K^ \pm\pi ^ \mp\) andK+K−π0 cross sections have been measured in the energy interval\(1350 \leqq \sqrt s\leqq 2400\) with the DM2 detector at DCI. The\(K_s^0 K^ \pm\pi ^ \mp\) cross section shows the contribution of an isoscalar vector meson at ≈1650 MeV/c2 in agreement with a previous experiment. The low statisticsK+K−π0 measurement is consistent with the above result.
The K0S K+- PI-+ cross section.
We have observed 1085 events of the type e + e − → hadrons, in the total centre-of-mass energy range √ s = 1.2 to 3.0 GeV. The energy dependence of the total annihilation cross-section, parametrized in the form σ ( e + e − → hadrons ) = A · s n , is measured to be n = -(1.54 −0.29 +0.17 ) in the above energy range.
RESULTS USING THE (AP P) MODEL WITH PHASE-SPACE CORRECTIONS.
R AS CALCULATED FROM THE TOTAL HADRONIC CROSS SECTION USING THE (AP P) MODEL.
TOTAL CROSS SECTIONS OBTAINED USING THE QUASI-MODEL-INDEPENDENT METHOD ARE TABULATED HERE.
The study of 620 hadron pairs produced in the s -range (1.44−9.0) GeV 2 , has yielded 110 collinear hadronic events. Their identification in terms of π and K mesons allows the determination of the time-like electromagnetic from factors of these pseudoscalar mesons in the above time-like range. The total number of (e + e − ) events observed in the same experimental conditions is 18 048.
No description provided.
By combining new results obtained at C.M. energies of 1.2 and 1.3 GeV with previous data obtained at lower energies from the e + e − annihilation process e + e − → π + π − π o π o , we get an indication in favour of the existence of a new vector meson of the ϱ type, ϱ' (1250), the first daughter of the ϱ in the predictions of the Veneziano model. Further results on the annihilation process e + e − → π (1600) → π + π − π + π − are also presented.
NOTE THAT ABOVE 1.3 GEV, THE CROSS SECTION VALUES ARE CRITICALLY DEPENDENT ON THE ASSUMPTION OF A PHASE SPACE DISTRIBUTION FOR THE FINAL STATE. NOTE ALSO THAT THE RHOPRIME(1600)0 --> RHO EPSILON(700) --> PI+ PI- PI0 PI0 RESONANT CONTRIBUTION HAS BEEN SUBTRACTED OUT. THIS CORRECTION IS GREATEST (25 PCT) AT 1.5 GEV.
An analysis has been performed of neutrino and antineutrino interactions with protons and neutrons in a deuterium bubble chamber. The interactions under study are quasielastic neutrino-neutron scattering and one-, two- and three-pion production reactions. Results are presented on cross sections, effective mass distributions, resonance production, momentum transfer distributions and coefficients of the decay angular distributions. Where possible, comparisons are made with existing theoretical models and predictions.
Numerical values supplied by A.Tenner. Note - the binning in this table is smaller than in the publication.
Numerical values supplied by A.Tenner. Note - the binning in this table is smaller than in the publication.
Numerical values supplied by A.Tenner. Note - the binning in this table is smaller than in the publication.
We present the first data on photon-photon annihilation into hadrons for CM energies > 1 GeV obtained with the detector PLUTO at the e + e − storage ring PETRA. Cross sections are extracted using an inelastic eγ scattering formalism. The results are compared to expectations from Regge-like models.
DEPENDENCE OF CROSS SECTION FOR ELECTRON-PHOTON SCATTERING (ANALOGOUS TO HAND'S FORMULA) ON VISIBLE HADRONIC ENERGY, CALCULATED BY TAKING PION MASSES FOR ALL CHARGED PARTICLES.
The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.
Polarized structure function of the reaction E- P --> E- PI+ P for Q**2 = 0.40 and W = 1.34 GeV.
The average multiplicities 〈 n c 〉 and 〈n〉, of charged-plus-neutral pions produced in e + e − collisions, have been determined for total center-of-mass energies ranging from 1.2 to 2.4 GeV. No appreciable multiplicity variation is observed over this energy range, where the mean values 〈; n c 〉 = 3.3 +0.3 −0.2 and 〈 n 〉 = 4.4 +0.4 −0.2 are found.
No description provided.
VALUES OF R CALCULATED FROM TOTAL CROSS SECTION.