The dynamics of the process $ e^+e^- \to \pi^+\pi^-\pi^0 $ is studied in the energy region from 1.15 to 2.00 GeV using data accumulated with the SND detector at the VEPP-2000 $e^+e^-$ collider. The Dalitz plot distribution and $\pi^+\pi^-$ mass spectrum are analyzed in a model including the intermediate states $\rho(770)\pi$, $\rho(1450)\pi$, and $\omega\pi^0$. As a result, the energy dependences of the $\rho(770)\pi$ and $\rho(1450)\pi$ cross sections and the relative phases between the $\rho(770)\pi$ amplitude and the $\rho(1450)\pi $ and $\omega\pi^0$ amplitudes are obtained. The $\rho(1450)\pi$ cross section has a peak in the energy region of the $\omega(1650)$ resonance (1.55-1.75 GeV). In this energy range the contributions of the $\rho(770)\pi$ and $\rho(1450)\pi$ states are of the same order of magnitude. No resonance structure near 1.65 GeV is observed in the $\rho(770)\pi$ cross section. We conclude that the intermediate state $\rho(1450)\pi$ gives a significant contribution to the decay of $\omega (1650)\to\pi^+\pi^-\pi^0$, whereas the $\rho(770)\pi$ mechanism dominates in the decay $\omega(1420)\to\pi^+\pi^-\pi^0$.
The Born cross section of the process e+e- -> pi+pi-pi0, scan 2012.
The Born cross section of the process e+e- -> pi+pi-pi0, scan 2011.
The cross section of intermediate states rho pi0, rho' pi0, omega pi0 in the process e+e- -> pi+pi-pi0 extracted by the Dalitz plot analysis.
The cross section for the e$^{+}$ e$^{–}$ → π$^{+}$π$^{–}$π$^{0}$ process in the energy range 1.05–2.00 GeV has been measured using the data collected in the experiment with the Spherical Neutral Detector (SND) at the VEPP-2000 e$^{+}$ e$^{–}$ collider. The obtained results on the cross section are in good agreement with previous measurements by the SND at the VEPP-2M collider and BABAR, but have a better accuracy.
The Born cross section of the process e+e- -> pi+pi-pi0.
The π+ photoproduction cross section in hydrogen has been measured at 180° for photon energies from 0.22 to 3.1 GeV by detecting the pion in the backward direction. The statistical accuracy of the measurements varies typically from 3 to 10% depending on the energy. The data are compared with other recent experimental results and predictions of phenomenological theories.
No description provided.
The total cross sections of π± on protons in the momentum interval from 0.40 to 0.90 GeV/c have been measured with high relative precision. In this interval the statistical error varies between 10 and 20 μb. No new structure is observed.
No description provided.
We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.
Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.
We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.
The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.
We present a measurement of the cross section for hadron production by e+e− annihilation in the vicinity of the previously observed resonance near 3.77 GeV. The data are used to determine the parameters of the ψ(3770) resonance. The values found are: mass, 3764±5 MeV/c2, total width, 23.5±5 MeV, and partial width to electron pairs, 276±50 eV.
PEAK CROSS SECTION FOR D MESON PAIR PRODUCTION AT PSI(3770) RESONANCE. J/PSI, PSI(3684) AND CONTINUUM BACKGROUND (R=2.5) SUBTRACTED.
This paper reports the results of an experiment measuring the parameters of various electroproduction reactions for a range in the electroproduction variables 0.7<Q2<4 GeV2 and 2<W2<16 GeV2. This report is limited to nondiffractive exclusive channels, with detailed results regarding the πΔ final states, statistically limited results for KΛ final states, and upper limits on the production of a number of event topologies containing a single unseen neutral particle.
No description provided.
This paper gives the results of a study of inelastic charged-current interactions of muon-type neutrinos with hydrogen and deuterium targets using the Argonne 12-foot bubble chamber. We discuss in detail the separation of the events from background. For the single-pion production reactions νp→μ−pπ+, νn→μ−nπ+, and νn→μ−pπ0, energy-dependent cross sections, differential cross sections, invariant-mass distributions, and the Δ++(1236) decay angular distribution are presented. These data are also used to study the isospin properties of the πN system. Comparisons of the data with models of single-pion production are made, and a direct test of partial conservation of the axial-vector current is discussed. Cross sections and invariant-mass distributions are given for the reactions in which more than one pion is produced. Ten events of strange-particle production were found, and the properties of these events are discussed. The energy dependence of the total νp and νn cross sections from threshold to 6 GeV was determined, and the σ(νn)σ(νp) ratio measured. This ratio and the inclusive x and y distributions rapidly approach the scaling distributions expected from the quark-parton model.
Measured charged current total cross section.
The differential cross sections at 180° for the reactions γ+p→π++n and γ+n→π−+p were measured using a magnetic spectrometer to detect π± mesons. In order to reduce the spread of energy resolution due to the nucleon motion inside the deuteron, a photon difference method was employed with a 50-MeV step for the reaction γ+n→π−+p. The data show structures at the second- and the third-resonance regions for both reactions. A simple phenomenological analysis was made for fitting the data, and the results are compared with those of previous analyses.
No description provided.
No description provided.