Radiative pi0 photoproduction on protons in the Delta+(1232) region

Schumann, S. ; Boillat, B. ; Downie, E.J. ; et al.
Eur.Phys.J.A 43 (2010) 269-282, 2010.
Inspire Record 843314 DOI 10.17182/hepdata.54377

The reaction gamma p -> p pi0 gamma' has been measured with the Crystal Ball / TAPS detectors using the energy-tagged photon beam at the electron accelerator facility MAMI-B. Energy and angular differential cross sections for the emitted photon gamma' and angular differential cross sections for the pi0 have been determined with high statistics in the energy range of the Delta+(1232) resonance. Cross sections and the ratio of the cross section to the non-radiative process gamma p -> p pi0 are compared to theoretical reaction models, having the anomalous magnetic moment kappa_Delta+ as free parameter. As the shape of the experimental distributions is not reproduced in detail by the model calculations, currently no extraction of kappa_Delta+ is feasible.

2 data tables match query

Total cross section for the background reaction GAMMA P --> P PI0.

Total cross section for the background reaction GAMMA P --> P PI0 PI0.


Version 2
Measurements of sigma(e+ e- --> mu+- mu-+) in the energy range 1.2-GeV to 3.0-GeV.

Alles-Borelli, V. ; Bernardini, M. ; Bollini, D. ; et al.
Phys.Lett.B 59 (1975) 201, 1975.
Inspire Record 99248 DOI 10.17182/hepdata.27778

The analysis of 1466 events of the type e + e − → μ ± μ ± , in the time-lifke range from 1.44 to 9.00 GeV 2 , sh that the absolute value of the cross-section and its energy dependence follow QED expectations within (± 3.2%) and (± 1.2%), respectively.

1 data table match query

The cross section of the reaction $e^+ e^- \to \mu^\pm \mu^\mp$ integrated over the experimental apparatus at 14 values of the colliding beam energy $E$ corresponding to total centre-of-mass energy $\sqrt{s}=2E$ from 1.2 to 3.0 GeV.


Negative Pion Production from Neutrons by Polarized gamma Rays

Nishikawa, T. ; Hiramatsu, S. ; Kimura, Y. ; et al.
Phys.Rev.Lett. 21 (1968) 1288-1291, 1968.
Inspire Record 944914 DOI 10.17182/hepdata.38534

The differential asymmetry ratio for the process γ+n→p+π− was measured at 90° in the center-of-mass system and for incident photon energies from 352 to 550 MeV. The observed asymmetries are larger than the values predicted from the theory by Berends, Donnachie, and Weaver. A smaller M1- amplitude gives better agreement between the experiment and the theory.

2 data tables match query

No description provided.

No description provided.


Measurement of asymmetry in spin dependent e p resonance region scattering.

Baum, Guenter ; Bergstrom, M.R. ; Clendenin, J.E. ; et al.
Phys.Rev.Lett. 45 (1980) 2000, 1980.
Inspire Record 154062 DOI 10.17182/hepdata.20698

The first measurements are reported of the asymmetry in resonance-region scattering of longitudinally polarized electrons by longitudinally polarized protons. Data have been obtained at Q2=0.5 and 1.5 (GeV/c)2 in the missing-mass range W=1.1−1.9 GeV. Results are compatible with a multipole analysis of single-pion electroproduction. The spin-dependent behavior is consistent with a duality mechanism as in the unpolarized case.

2 data tables match query

ELECTRON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.

PHOTON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.


Photoproduction of Charged pi Mesons from Hydrogen and Deuterium in the Energy Range Between 250-MeV and 790-MeV

Fujii, T. ; Kondo, T. ; Takasaki, F. ; et al.
Nucl.Phys.B 120 (1977) 395-422, 1977.
Inspire Record 108476 DOI 10.17182/hepdata.8405

The differential cross sections for γ p→ π + n from hydrogen and the π − π + ratios from deuterium were measured at nine c.m. angles between 30° and 150° for laboratory photon energies between 260 and 800 MeV. A magnetic spectrometer with three layers of scintillation hodoscope was used to detect charged π mesons. The cross section for γ n→ π − p was obtained as a product of d σ d Ω (γ p →π + n ) and the π − π + ratio. The overall features in the cross sections of the two reactions, γ p→ π + n and γ n→ π − p, and in the ratios, π − π + , agree with predictions by Moorhouse, Oberlack and Rosenfeld, and Metcalf and Walker. An investigation of the possible existence of an isotensor current was made and a negative result was found. In detailed balance comparison with the new results on the inverse reaction π − p→ γ n, no apparent violation of time-reversal invariance was observed.

1 data table match query

No description provided.