Measurement of the $k_\mathrm{t}$ splitting scales in $Z \to \ell\ell$ events in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 08 (2017) 026, 2017.
Inspire Record 1589844 DOI 10.17182/hepdata.76966

A measurement of the splitting scales occuring in the $k_\mathrm{t}$ jet-clustering algorithm is presented for final states containing a $Z$ boson. The measurement is done using 20.2 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s} = 8$ TeV by the ATLAS experiment at the LHC in 2012. The measurement is based on charged-particle track information, which is measured with excellent precision in the $p_\mathrm{T}$ region relevant for the transition between the perturbative and the non-perturbative regimes. The data distributions are corrected for detector effects, and are found to deviate from state-of-the-art predictions in various regions of the observables.

8 data tables match query

The measured fiducial as a function of sqrt(d0). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

The measured fiducial as a function of sqrt(d1). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

The measured fiducial as a function of sqrt(d2). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

More…

Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 199, 2018.
Inspire Record 1632760 DOI 10.17182/hepdata.80462

A search for doubly charged Higgs bosons with pairs of prompt, isolated, highly energetic leptons with the same electric charge is presented. The search uses a proton-proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to 36.1 $\mathrm{fb}^{-1}$ of integrated luminosity recorded in 2015 and 2016 by the ATLAS detector at the LHC. This analysis focuses on the decays $H^{\pm\pm}\rightarrow e^{\pm}e^{\pm}$, $H^{\pm\pm}\rightarrow e^{\pm}\mu^{\pm}$ and $H^{\pm\pm}\rightarrow \mu^{\pm}\mu^{\pm}$, fitting the dilepton mass spectra in several exclusive signal regions. No significant evidence of a signal is observed and corresponding limits on the production cross-section are derived at 95% confidence level. The observed lower limit on the mass of a doubly charged Higgs boson only coupling to left-handed leptons ($e$,$\mu$) varies from 770 GeV to 870 GeV (850 GeV expected) for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 100% and both the expected and observed mass limits are above 450 GeV for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 10% and any combination of partial branching ratios.

32 data tables match query

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 100\%$, $B(e \mu ) = 0\%$, and $B( \mu \mu ) = 0\%$.

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 0\%$, $B(e \mu ) = 0\%$, and $B( \mu \mu ) = 100\%$.

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 0\%$, $B(e \mu ) = 100\%$, and $B( \mu \mu ) = 0\%$.

More…

Measurement of the inclusive and fiducial $t\bar{t}$ production cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 487, 2018.
Inspire Record 1644099 DOI 10.17182/hepdata.81945

The inclusive and fiducial $t\bar{t}$ production cross-sections are measured in the lepton+jets channel using 20.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and $b$-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive $t\bar{t}$ cross-section is measured with a precision of 5.7% to be $\sigma_{\text{inc}}(t\bar{t})$ = 248.3 $\pm$ 0.7 (stat.) $\pm$ 13.4 (syst.) $\pm$ 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is $\sigma_{\text{fid}}(t\bar{t})$ = 48.8 $\pm$ 0.1 (stat.) $\pm$ 2.0 (syst.) $\pm$ 0.9 (lumi.) pb with a precision of 4.5%.

2 data tables match query

The measured inclusive cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity

The measured fiducial cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity


Search for new phenomena in high-mass final states with a photon and a jet from $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 102, 2018.
Inspire Record 1627878 DOI 10.17182/hepdata.78551

A search is performed for new phenomena in events having a photon with high transverse momentum and a jet collected in 36.7 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The invariant mass distribution of the leading photon and jet is examined to look for the resonant production of new particles or the presence of new high-mass states beyond the Standard Model. No significant deviation from the background-only hypothesis is observed and cross-section limits for generic Gaussian-shaped resonances are extracted. Excited quarks hypothesized in quark compositeness models and high-mass states predicted in quantum black hole models with extra dimensions are also examined in the analysis. The observed data exclude, at 95% confidence level, the mass range below 5.3 TeV for excited quarks and 7.1 TeV (4.4 TeV) for quantum black holes in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model with six (one) extra dimensions.

6 data tables match query

Observed 95% CL upper limits on the production cross section times branching ratio to a photon and a quark or gluon for the excited-quarks model.The limits are placed as a function of m_q* for the excited-quark signal. The calculation is performed using ensemble tests for masses in the search range every 250 GeV up to 5 TeV and then 200 GeV up to 6 TeV.

Observed 95% CL upper limits on the production cross section times branching ratio to a photon and a quark or gluon for the RS1 model. The limits are placed as a function of M_th. The calculation is performed using ensemble tests for masses in the search range every 200 GeV.

Fiducial acceptance and selection efficiency for the excited quark model as a function of the excited-quark mass.

More…

Search for the dimuon decay of the Higgs boson in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 119 (2017) 051802, 2017.
Inspire Record 1599399 DOI 10.17182/hepdata.78379

A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the $pp$ collision data at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

3 data tables match query

Measurement of signal strength

Event yields for the expected signal (S) and background (B) processes, and numbers of the observed data events in different categories. The full widths at half maximum (FWHM) of the signal $m_{μμ}$ distributions are also shown. In each category, the event yields are counted within an $m_{μμ}$ interval, which is centered at the simulated signal peak and contains 90% of the expected signal events. The expected signal event yields are normalized to $36.1 fb^-1$. The background in each category is normalized to the observed data yield, while the relative fractions between the different processes are fixed to the SM predictions.

The 95% CL upper limit on signal strength


Version 2
Measurement of the production cross section of three isolated photons in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 781 (2018) 55-76, 2018.
Inspire Record 1644367 DOI 10.17182/hepdata.80511

A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.

13 data tables match query

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon1).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon2).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon3).

More…

Measurement of the exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ process in proton--proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 777 (2018) 303-323, 2018.
Inspire Record 1615866 DOI 10.17182/hepdata.79947

The production of exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The measurement is performed for a dimuon invariant mass of 12 GeV $<m_{\mu^+\mu^-}<$ 70 GeV. The integrated cross-section is determined within a fiducial acceptance region of the ATLAS detector and differential cross-sections are measured as a function of the dimuon invariant mass. The results are compared to theoretical predictions that include corrections for absorptive effects.

2 data tables match query

The measured fiducial cross section.

Differential fiducial cross section in bins of the dimuon invariant mass. The measurements are listed together with the statistical and systematic uncertainties. The systematic uncertainties are separated into 2 uncorrelated, 7 correlated sources and the luminosity uncertainty. The sign of the uncertainty corresponds to a one standard deviation upward shift of the uncertainty source, where +/- means "+" and -/+ means "-".


Measurement of inclusive and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2017) 132, 2017.
Inspire Record 1615206 DOI 10.17182/hepdata.79497

Inclusive and differential fiducial cross sections of Higgs boson production in proton-proton collisions are measured in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The inclusive fiducial cross section in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel is measured to be 3.62 $\pm$ 0.50 (stat) $^{+0.25}_{-0.20}$ (sys) fb, in agreement with the Standard Model prediction of 2.91 $\pm$ 0.13 fb. The cross section is also extrapolated to the total phase space including all Standard Model Higgs boson decays. Several differential fiducial cross sections are measured for observables sensitive to the Higgs boson production and decay, including kinematic distributions of jets produced in association with the Higgs boson. Good agreement is found between data and Standard Model predictions. The results are used to put constraints on anomalous Higgs boson interactions with Standard Model particles, using the pseudo-observable extension to the kappa-framework.

16 data tables match query

Measured differential fiducial cross sections in Higgs transverse momentum (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in Higgs rapidity (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in invariant mass of the subleading lepton pair (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

More…

Measurement of the $t\bar{t}\gamma$ production cross section in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 086, 2017.
Inspire Record 1604029 DOI 10.17182/hepdata.81946

The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with $20.2$ fb$^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum $p_\mathrm{T} > 15$ GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a $b$-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be $139 \pm 7 (\mathrm{stat.}) \pm 17 (\mathrm{syst.})$ fb, in good agreement with the theoretical prediction at next-to-leading order of $151 \pm 24$ fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.

3 data tables match query

The measured fiducial cross sections. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pT. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pseudorapidity. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty


Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

29 data tables match query

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

More…