Version 2
Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 052010, 2018.
Inspire Record 1644618 DOI 10.17182/hepdata.80609

A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015-2016, corresponding to 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=13$ TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with non-universal Higgs boson masses.

240 data tables match query

<b>Kinematics 1</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SR&#8467;&#8467;-m<sub>&#8467;&#8467;</sub> [1, 60] (top) and slepton SR&#8467;&#8467;-m<sub>T2</sub><sup>100</sup> [100, &infin;] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>&#8467;&#8467;</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H&#771; and slepton &#8467;&#771; simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.

<b>Kinematics 1</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SR&#8467;&#8467;-m<sub>&#8467;&#8467;</sub> [1, 60] (top) and slepton SR&#8467;&#8467;-m<sub>T2</sub><sup>100</sup> [100, &infin;] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>&#8467;&#8467;</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H&#771; and slepton &#8467;&#771; simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.

<b>Kinematics 2</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SR&#8467;&#8467;-m<sub>&#8467;&#8467;</sub> [1, 60] (top) and slepton SR&#8467;&#8467;-m<sub>T2</sub><sup>100</sup> [100, &infin;] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>&#8467;&#8467;</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H&#771; and slepton &#8467;&#771; simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.

More…

Version 2
Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 765, 2017.
Inspire Record 1609448 DOI 10.17182/hepdata.78366

Observables sensitive to the anomalous production of events containing hadronic jets and missing momentum in the plane transverse to the proton beams at the Large Hadron Collider are presented. The observables are defined as a ratio of cross sections, for events containing jets and large missing transverse momentum to events containing jets and a pair of charged leptons from the decay of a $Z/\gamma^\ast$ boson. This definition minimises experimental and theoretical systematic uncertainties in the measurements. This ratio is measured differentially with respect to a number of kinematic properties of the hadronic system in two phase-space regions; one inclusive single-jet region and one region sensitive to vector-boson-fusion topologies. The data are found to be in agreement with the Standard Model predictions and used to constrain a variety of theoretical models for dark-matter production, including simplified models, effective field theory models, and invisible decays of the Higgs boson. The measurements use 3.2 fb$^{-1}$ of proton--proton collision data recorded by the ATLAS experiment at a centre-of-mass energy of 13 TeV and are fully corrected for detector effects, meaning that the data can be used to constrain new-physics models beyond those shown in this paper.

14 data tables match query

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the $\geq 1$ jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the $\geq 1$ jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the VBF jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

More…