Measurement of photon-jet transverse momentum correlations in 5.02 TeV Pb+Pb and $pp$ collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 789 (2019) 167-190, 2019.
Inspire Record 1694678 DOI 10.17182/hepdata.85369

Jets created in association with a photon can be used as a calibrated probe to study energy loss in the medium created in nuclear collisions. Measurements of the transverse momentum balance between isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb$^{-1}$ of Pb+Pb collision data at $\sqrt{s_\mathrm{NN}}=5.02$ TeV and 25 pb$^{-1}$ of $pp$ collision data at $\sqrt{s}=5.02$ TeV recorded with the ATLAS detector at the LHC. Photons with transverse momentum $63.1 < p_\mathrm{T}^{\gamma} < 200$ GeV and $\left|\eta^{\gamma}\right| < 2.37$ are paired inclusively with all jets in the event that have $p_\mathrm{T}^\mathrm{jet} > 31.6$ GeV and pseudorapidity $\left|\eta^\mathrm{jet}\right| < 2.8$. The transverse momentum balance given by the jet-to-photon $p_\mathrm{T}$ ratio, $x_\mathrm{J\gamma}$, is measured for pairs with azimuthal opening angle $\Delta\phi > 7\pi/8$. Distributions of the per-photon jet yield as a function of $x_\mathrm{J\gamma}$, $(1/N_\gamma)(\mathrm{d}N/\mathrm{d}x_\mathrm{J\gamma})$, are corrected for detector effects via a two-dimensional unfolding procedure and reported at the particle level. In $pp$ collisions, the distributions are well described by Monte Carlo event generators. In Pb+Pb collisions, the $x_\mathrm{J\gamma}$ distribution is modified from that observed in $pp$ collisions with increasing centrality, consistent with the picture of parton energy loss in the hot nuclear medium. The data are compared with a suite of energy-loss models and calculations.

6 data tables match query

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 63.1-79.6 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 79.6-100 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 100-158 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

More…

Measurement of the azimuthal anisotropy of charged particles produced in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 997, 2018.
Inspire Record 1686834 DOI 10.17182/hepdata.84427

Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $

456 data tables match query

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%

More…

Search for heavy charged long-lived particles in proton-proton collisions at $\sqrt{s} = 13$ TeV using an ionisation measurement with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 788 (2019) 96-116, 2019.
Inspire Record 1686832 DOI 10.17182/hepdata.83962

This Letter presents a search for heavy charged long-lived particles produced in proton-proton collisions at $\sqrt{s} = 13$ TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of $R$-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and gluino masses are set, assuming the gluino always decays in two quarks and a stable neutralino. $R$-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable $R$-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV.

26 data tables match query

The number of events in each CR, VR, and SR for the predicted background, for the expected contribution from the signal model normalised to $36.1$ fb$^{-1}$, and in the observed data. The predicted background includes the statistical and systematic uncertainties, respectively. The uncertainty in the signal yield includes all systematic uncertainties except that in the theoretical cross-section.

The number of events in each CR, VR, and SR for the predicted background, for the expected contribution from the signal model normalised to $36.1$ fb$^{-1}$, and in the observed data. The predicted background includes the statistical and systematic uncertainties, respectively. The uncertainty in the signal yield includes all systematic uncertainties except that in the theoretical cross-section.

Expected number of $R$-hadron signal events at different stages of the selection, normalised to $36.1$ fb$^{-1}$. Shown for three different signal points is the number of events expected and the number of events expected in which the selected track has been matched to a generated $R$-hadron. If the gluino decays, it decays to a 100 GeV $\tilde{\chi}^{0}$ and SM quarks.

More…

Version 2
Probing the quantum interference between singly and doubly resonant top-quark production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 152002, 2018.
Inspire Record 1677498 DOI 10.17182/hepdata.83544

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a $W$ boson and a $b$-quark are significant. Events with exactly two leptons ($ee$, $\mu\mu$, or $e\mu$) and two $b$-tagged jets that satisfy a multi-particle invariant mass requirement are selected from $36.1$ fb$^{-1}$ of proton-proton collision data taken at $\sqrt{s}=13$ TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within $2\sigma$ of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

15 data tables match query

The minimax-mbl distribution in the three-b-tag region, constructed from the two b-jets with largest transverse momentum. The predicted tt+HF contribution from simulation is scaled to match observed data in this region. The hashed band indicates the uncertainty on the total number of predicted events, where the DR scheme is used to estimate the minor contribution from the tW process. Uncertainties include all statistical and systematic sources.

The detector-level minimax-mbl distribution, with signal selection and background estimation as described in the text. The total predicted events are shown for both the DR and DS definitions of the tW process, with uncertainties on the respective estimates indicated by separate error bars. Uncertainties include all statistical and systematic sources.

The unfolded, normalized differential minimax-mbl cross-section compared with theoretical models of the tt+tWb signal with various implementations of interference effects. The uncertainty of each data point includes all statistical and systematic sources, while uncertainties for each of the MC predictions correspond to variations of the PDF set and renormalization and factorization scales.

More…

Version 2
Measurement of jet fragmentation in Pb+Pb and $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 98 (2018) 024908, 2018.
Inspire Record 1673177 DOI 10.17182/hepdata.91197

This paper presents a measurement of jet fragmentation functions in 0.49 nb$^{-1}$ of Pb+Pb collisions and 25 pb$^{-1}$ of $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in $pp$ collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.

182 data tables match query

The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.

The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.

The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.

More…

Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2021) 146, 2021.
Inspire Record 1843269 DOI 10.17182/hepdata.97160

A search for charged Higgs bosons decaying into $W^\pm W^\pm$ or $W^\pm Z$ bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged $H^{\pm\pm}$ bosons, or the associated production of a doubly charged $H^{\pm\pm}$ boson and a singly charged $H^\pm$ boson. No significant deviations from the Standard Model predictions are observed. $H^{\pm\pm}$ bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively.

25 data tables match query

Distribution of $E_{T}^{miss}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

Distribution of $\Delta R_{\ell^{\pm}\ell^{\pm}}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

Distribution of $M_{jets}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

More…

Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052005, 2019.
Inspire Record 1704138 DOI 10.17182/hepdata.85748

A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

122 data tables match query

- - - - - - - - - - - - - - - - - - - - <br/><b>Muon RoI Cluster trigger efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table1">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table2">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table3">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table4">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table5">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table6">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table7">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table8">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table9">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table10">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table11">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table12">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table13">Endcaps </a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table14">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table15">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table16">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table17">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table18">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table19">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table20">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table21">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table22">Endcaps</a> <br/><b>MS vertex efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table23">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table24">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table25">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table26">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table27">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table28">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table29">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table30">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table31">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table32">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table33">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table34">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table35">Endcaps</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table36">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table37">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table38">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table39">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table40">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table41">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table42">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table43">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table44">Endcaps</a> <br/><b>Exclusion limits:</b> <br/><i>mPhi=125, mS=5:</i> <a href="85748?version=1&table=Table45">2Vx</a> <a href="85748?version=1&table=Table46">1Vx</a> <a href="85748?version=1&table=Table47">Combined</a> <br/><i>mPhi=125, mS=8:</i> <a href="85748?version=1&table=Table48">2Vx</a> <a href="85748?version=1&table=Table49">1Vx</a> <a href="85748?version=1&table=Table50">Combined</a> <br/><i>mPhi=125, mS=15:</i> <a href="85748?version=1&table=Table51">2Vx</a> <a href="85748?version=1&table=Table52">1Vx</a> <a href="85748?version=1&table=Table53">Combined</a> <br/><i>mPhi=125, mS=25:</i> <a href="85748?version=1&table=Table54">2Vx</a> <a href="85748?version=1&table=Table55">1Vx</a> <a href="85748?version=1&table=Table56">Combined</a> <br/><i>mPhi=125, mS=40:</i> <a href="85748?version=1&table=Table57">2Vx</a> <a href="85748?version=1&table=Table58">1Vx</a> <a href="85748?version=1&table=Table59">Combined</a> <br/><i>Stealth SUSY mG=250:</i> <a href="85748?version=1&table=Table60">2Vx</a> <br/><i>Stealth SUSY mG=500:</i> <a href="85748?version=1&table=Table61">2Vx</a> <a href="85748?version=1&table=Table62">1Vx</a> <a href="85748?version=1&table=Table63">Combined</a> <br/><i>Stealth SUSY mG=800:</i> <a href="85748?version=1&table=Table64">2Vx</a> <a href="85748?version=1&table=Table65">1Vx</a> <a href="85748?version=1&table=Table66">Combined</a> <br/><i>Stealth SUSY mG=1200:</i> <a href="85748?version=1&table=Table67">2Vx</a> <a href="85748?version=1&table=Table68">1Vx</a> <a href="85748?version=1&table=Table69">Combined</a> <br/><i>Stealth SUSY mG=1500:</i> <a href="85748?version=1&table=Table70">2Vx</a> <a href="85748?version=1&table=Table71">1Vx</a> <a href="85748?version=1&table=Table72">Combined</a> <br/><i>Stealth SUSY mG=2000:</i> <a href="85748?version=1&table=Table73">2Vx</a> <a href="85748?version=1&table=Table74">1Vx</a> <a href="85748?version=1&table=Table75">Combined</a> <br/><i>mPhi=100, mS=8:</i> <a href="85748?version=1&table=Table76">2Vx</a> <br/><i>mPhi=100, mS=25:</i> <a href="85748?version=1&table=Table77">2Vx</a> <br/><i>mPhi=200, mS=8:</i> <a href="85748?version=1&table=Table78">2Vx</a> <br/><i>mPhi=200, mS=25:</i> <a href="85748?version=1&table=Table79">2Vx</a> <br/><i>mPhi=200, mS=50:</i> <a href="85748?version=1&table=Table80">2Vx</a> <br/><i>mPhi=400, mS=50:</i> <a href="85748?version=1&table=Table81">2Vx</a> <br/><i>mPhi=400, mS=100:</i> <a href="85748?version=1&table=Table82">2Vx</a> <br/><i>mPhi=600, mS=50:</i> <a href="85748?version=1&table=Table83">2Vx</a> <br/><i>mPhi=600, mS=150:</i> <a href="85748?version=1&table=Table84">2Vx</a> <br/><i>mPhi=1000, mS=50:</i> <a href="85748?version=1&table=Table85">2Vx</a> <br/><i>mPhi=1000, mS=150:</i> <a href="85748?version=1&table=Table86">2Vx</a> <br/><i>mPhi=1000, mS=400:</i> <a href="85748?version=1&table=Table87">2Vx</a> <br/><i>Baryogenesis nubb, mChi=10</i> <a href="85748?version=1&table=Table88">2Vx</a> <a href="85748?version=1&table=Table89">1Vx</a> <a href="85748?version=1&table=Table90">Combined</a> <br/><i>Baryogenesis nubb, mChi=30</i> <a href="85748?version=1&table=Table91">2Vx</a> <a href="85748?version=1&table=Table92">1Vx</a> <a href="85748?version=1&table=Table93">Combined</a> <br/><i>Baryogenesis nubb, mChi=50</i> <a href="85748?version=1&table=Table94">2Vx</a> <a href="85748?version=1&table=Table95">1Vx</a> <a href="85748?version=1&table=Table96">Combined</a> <br/><i>Baryogenesis nubb, mChi=100</i> <a href="85748?version=1&table=Table97">2Vx</a> <br/><i>Baryogenesis cbs, mChi=10</i> <a href="85748?version=1&table=Table98">2Vx</a> <a href="85748?version=1&table=Table99">1Vx</a> <a href="85748?version=1&table=Table100">Combined</a> <br/><i>Baryogenesis cbs, mChi=30</i> <a href="85748?version=1&table=Table101">2Vx</a> <a href="85748?version=1&table=Table102">1Vx</a> <a href="85748?version=1&table=Table103">Combined</a> <br/><i>Baryogenesis cbs, mChi=50</i> <a href="85748?version=1&table=Table104">2Vx</a> <a href="85748?version=1&table=Table105">1Vx</a> <a href="85748?version=1&table=Table106">Combined</a> <br/><i>Baryogenesis cbs, mChi=100</i> <a href="85748?version=1&table=Table107">2Vx</a> <br/><i>Baryogenesis lcb, mChi=10</i> <a href="85748?version=1&table=Table108">2Vx</a> <a href="85748?version=1&table=Table109">1Vx</a> <a href="85748?version=1&table=Table110">Combined</a> <br/><i>Baryogenesis lcb, mChi=30</i> <a href="85748?version=1&table=Table111">2Vx</a> <a href="85748?version=1&table=Table112">1Vx</a> <a href="85748?version=1&table=Table113">Combined</a> <br/><i>Baryogenesis lcb, mChi=50</i> <a href="85748?version=1&table=Table114">2Vx</a> <a href="85748?version=1&table=Table115">1Vx</a> <a href="85748?version=1&table=Table116">Combined</a> <br/><i>Baryogenesis lcb, mChi=100</i> <a href="85748?version=1&table=Table117">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=10</i> <a href="85748?version=1&table=Table118">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=30</i> <a href="85748?version=1&table=Table119">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=50</i> <a href="85748?version=1&table=Table120">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=100</i> <a href="85748?version=1&table=Table121">2Vx</a>

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=100$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=125$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

More…

Version 2
Search for displaced leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 127 (2021) 051802, 2021.
Inspire Record 1831504 DOI 10.17182/hepdata.98796

A search for charged leptons with large impact parameters using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of possible new physics signatures. Results are consistent with the background prediction. This search provides unique sensitivity to long-lived scalar supersymmetric lepton-partners (sleptons). For lifetimes of 0.1 ns, selectron, smuon and stau masses up to 720 GeV, 680 GeV, and 340 GeV are respectively excluded at 95% confidence level, drastically improving on the previous best limits from LEP.

92 data tables match query

Cutflow for SR-$ee$ for 5 representative signal points. For the following $\tilde{e}$ mass and lifetime points, the number of Monte Carlo events generated are: 24,000 for (100 GeV, 0.01 ns), 16,000 for (300 GeV, 1 ns), and 12,000 for (500 GeV, 0.1 ns). For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

Cutflow for SR-$ee$ for 5 representative signal points. For the following $\tilde{e}$ mass and lifetime points, the number of Monte Carlo events generated are: 24,000 for (100 GeV, 0.01 ns), 16,000 for (300 GeV, 1 ns), and 12,000 for (500 GeV, 0.1 ns). For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

Cutflow for SR-$e\mu$ for 2 representative signal points. For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

More…

Correlated long-range mixed-harmonic fluctuations measured in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 789 (2019) 444-471, 2019.
Inspire Record 1681154 DOI 10.17182/hepdata.83969

Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.

60 data tables match query

The symmetric cumulant $sc_{2,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

More…

Search for lepton-flavor-violation in $Z$-boson decays with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.Lett. 127 (2022) 271801, 2022.
Inspire Record 1865746 DOI 10.17182/hepdata.105516

A search for lepton-flavor-violating $Z\to e\tau$ and $Z\to\mu\tau$ decays with $pp$ collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb$^{-1}$ of Run 2 $pp$ collisions at $\sqrt{s}=13$ TeV and is combined with the results of a similar ATLAS search in the final state in which the $\tau$-lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying $\tau$-leptons significantly improves the sensitivity reach for $Z\to\ell\tau$ decays. The $Z\to\ell\tau$ branching fractions are constrained in this analysis to $\mathcal{B}(Z\to e\tau)<7.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<7.2\times10^{-6}$ at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: $\mathcal{B}(Z\to e\tau)<5.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<6.5\times10^{-6}$ at 95% confidence level.

16 data tables match query

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $\mu\tau_e$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the high-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

More…