We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.
The $W + b$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.
The $W + c$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.
The $\sigma(W+c)/\sigma(W+b)$ cross section ratio in bins of $c(b)$-jet $p_T$.
We study $\Lambda$ and $\bar{\Lambda}$ production asymmetries in $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$ events recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV. We find an excess of $\Lambda$'s ($\bar{\Lambda}$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $\bar{\Lambda}/\Lambda$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.
Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ with $p_T > 2.0$ GeV in minimum bias events $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, events $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.
Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ in bins of $p_T$ in events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.
The gauge boson pair production processes Wg, WW, WZ, and Zg were studied using pbarp collisions corresponding to an integrated luminosity of ~14 pb-1 at a center-of-mass energy of sqrt(s) = 1.8 TeV. Analysis of Wg prod with subsequent W boson decay to lv (l=e,mu) is reported, including a fit to the pT spectrum of the photons which leads to limits on anomalous WWg couplings. A search for WW prod with subsequent decay to l-lbar-v-vbar (l=e,mu) is presented leading to an upper limit on the WW prod cross section and limits on anomalous WWg and WWZ couplings. A search for high pT W bosons in WW and WZ prod is described, where one W boson decays to an ev and the second W boson or the Z boson decays to two jets. A maximum likelihood fit to the pT spectrum of W bosons resulted in limits on anomalous WWg and WWZ couplings. A combined fit to the three data sets which provided the tightest limits on anomalous WWg and WWZ couplings is also described. Limits on anomalous ZZg and Zgg couplings are presented from an analysis of the photon ET spectrum in Zg events in the decay channels (ee, mu-mu, and v-vbar) of the Z boson.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.
This study reports the first measurement of the azimuthal decorrelation between jets with pseudorapidity separation up to five units. The data were accumulated using the D\O\ detector during the 1992--1993 collider run of the Fermilab Tevatron at $\sqrt{s}=$ 1.8 TeV. These results are compared to next--to--leading order (NLO) QCD predictions and to two leading--log approximations (LLA) where the leading--log terms are resummed to all orders in $\alpha_{\scriptscriptstyle S}$. The final state jets as predicted by NLO QCD show less azimuthal decorrelation than the data. The parton showering LLA Monte Carlo {\small HERWIG} describes the data well; an analytical LLA prediction based on BFKL resummation shows more decorrelation than the data.
Distribution of the pseudorapidity interval of the two jets at the extremes of pseudorapidity. Data are read from the graph and the errors are statistical only.
Normalized distributions of the azimuthal angle difference of the two jets at the extremes of pseudorapidity in 3 pseudorapididity difference intervals. Data are read from the graph and the errors are statistical only.
The correlation between the PHI and ETARAP difference distributions as used in the analysis.Data are read from the graph and the errors include the statiucal and un-correlated systematic errors added in quadrature.
We have searched for a heavy neutral gauge boson, Z ′, using the decay channel Z ′ → ee . The data were collected with the DØ detector at the Fermilab Tevatron during the 1992–1993 p p collider run at s =1.8 TeV from an integrated luminosity of 15±1 pb −1 . Limits are set on the cross section times brancing ratio for the process p p → Z′ → ee as a function of the Z ′ mass. We exclude the existence of a Z ′ of mass less than 490 GeV/c 2 , assuming a Z ′ with the same coupling strengths to quarks and leptons as the standard model Z boson.
No description provided.
None
The cross section was obtained aunder the assumption that top quark has a mass of 200 GeV.
None
Cross section times the branching ratio for decay into dimuons.
We have measured the dijet angular distribution in $\sqrt{s}$=1.8 TeV $p\bar{p}$ collisions using the D0 detector. Order $\alpha^{3}_{s}$ QCD predictions are in good agreement with the data. At 95% confidence the data exclude models of quark compositeness in which the contact interaction scale is below 2 TeV.
No description provided.
We study the process of associated photon and jet production, p+pbar --> photon + jet + X, using 8.7 fb^-1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy sqrt{s}=1.96 TeV. Photons are reconstructed with rapidity |y^gamma| <1.0 or 1.5<|y^{gamma}| < 2.5 and transverse momentum pT^gamma GeV. The highest-p_T jet is required to be in one of four rapidity regions up to |y^{jet}|< 3.2. For each rapidity configuration we measure the differential cross sections in pT_gamma separately for events with the same sign (y^{gamma} y^{jet}}>0) and opposite sign (y^{gamma} y^{jet}<=0) of photon and jet rapidities. We compare the measured triple differential cross sections, d^3 sigma / d pT_gamma y^{gamma} y^{jet}, to next-to-leading order (NLO) perturbative QCD calculations using different sets of parton distribution functions and to predictions from the SHERPA and PYTHIA Monte Carlo event generators. The NLO calculations are found to be in general agreement with the data, but do not describe all kinematic regions.
The triple differential GAMMA+JET cross section for |y_gamma| < 1.0, |y_jet| <= 0.8 and y_gamma*y_jet > 0 A common 6.8% nomalization is included in the (sys) error.
The triple differential GAMMA+JET cross section for |y_gamma| < 1.0, |y_jet| 0.8 TO 1.6 and y_gamma*y_jet > 0 A common 6.8% nomalization is included in the (sys) error.
The triple differential GAMMA+JET cross section for |y_gamma| < 1.0, |y_jet| 1.6 TO 2.4 and y_gamma*y_jet > 0 A common 6.8% nomalization is included in the (sys) error.
Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%