Search for new phenomena in final states with large jet multiplicities and missing transverse momentum with ATLAS using $\sqrt{s} =$ 13 TeV proton-proton collisions

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett. B757 (2016) 334-355, 2016.
Inspire Record 1422615 DOI 10.17182/hepdata.71987
70 data tables match query

$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 7ej50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.

$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 6ej80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.

$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.

More…

Search for scalar leptoquarks in pp collisions at $\sqrt{s}$ = 13 TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
New J.Phys. 18 (2016) 093016, 2016.
Inspire Record 1462258 DOI 10.17182/hepdata.73322
4 data tables match query

Normalisation factors for the main backgrounds obtained from the combined fit in each of the channels. The total uncertainty is given.

Search for the first generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

Search for the second generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

More…

Measurement of $W^{\pm}$ and $Z$-boson production cross sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett. B759 (2016) 601-621, 2016.
Inspire Record 1436497 DOI 10.17182/hepdata.73611

Measurements of the $W^{\pm} \rightarrow \ell^{\pm} \nu$ and $Z \rightarrow \ell^+ \ell^-$ production cross sections (where $\ell^{\pm}=e^{\pm},\mu^{\pm}$) in proton-proton collisions at $\sqrt{s}=13$ TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb$^{-1}$ The total inclusive $W^{\pm}$-boson production cross sections times the single-lepton-flavour branching ratios are $\sigma_{W^+}^{tot}= 11.83 \pm 0.02 (stat) \pm 0.32 (sys) \pm 0.25 (lumi)$ nb and $\sigma_{W^-}^{tot} = 8.79 \pm 0.02 (stat) \pm 0.24 (sys) \pm 0.18 (lumi)$ nb for $W^+$ and $W^-$, respectively. The total inclusive $Z$-boson production cross section times leptonic branching ratio, within the invariant mass window $66 < m_{\ell\ell} < 116$ GeV, is $\sigma_{Z}^{tot} = 1.981 \pm 0.007 (stat) \pm 0.038 (sys) \pm 0.042 (lumi)$ nb. The $W^+$, $W^-$, and $Z$-boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in $\sigma_{W^+}^{fid}/\sigma_{W^-}^{fid} = 1.295 \pm 0.003 (stat) \pm 0.010 (sys)$ and $\sigma_{W^{\pm}}^{fid}/\sigma_{Z}^{fid} = 10.31 \pm 0.04 (stat) \pm 0.20 (sys)$. Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and to next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these measurements.

24 data tables match query

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state.

More…

Search for metastable heavy charged particles with large ionization energy loss in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev. D93 (2016) 112015, 2016.
Inspire Record 1448101 DOI 10.17182/hepdata.73584

This paper presents a search for massive charged long-lived particles produced in pp collisions at s=13  TeV at the LHC using the ATLAS experiment. The data set used corresponds to an integrated luminosity of 3.2  fb-1. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as R-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the s=8  TeV data set, thanks to the increase in expected signal cross section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross sections and masses are set. Gluino R-hadrons with lifetimes above 0.4 ns and decaying to qq¯ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 and 1590 GeV. In the case of stable R-hadrons the lower mass limit at the 95% confidence level is 1570 GeV.

5 data tables match query

Mass distribution for data and expected background for stable particle searches. Also shown are two examples for signals as expected for gluino R-hadrons in the explored mass range. The uncertainty on the background estimation includes both the statistical and systematic uncertainties.

Mass distribution for data and expected background for metastable particle searches. Also shown are two examples for signals as expected for gluino R-hadrons in the explored mass range. The uncertainty on the background estimation includes both the statistical and systematic uncertainties.

Cross-section as a function of mass for gluino R-hadrons with lifetime tau=10 ns, decaying to qanti-q plus a light neutralino of mass=100 GeV. The central value of the observed and expected 95% upper limit on excluded cross-section is given. The 1 sigma band on the expected UL is given as an uncertainty.

More…

Measurement of the $ZZ$ Production Cross Section in $pp$ Collisions at $\sqrt{s}$ = 13 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 116 (2016) 101801, 2016.
Inspire Record 1409923 DOI 10.17182/hepdata.70866
5 data tables match query

Measured fiducial cross section in the $e^+e^-e^+e^-$ channel. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

Measured fiducial cross section in the $e^+e^-\mu^+\mu^-$ channel. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

Measured fiducial cross section in the $\mu^+\mu^-\mu^+\mu^-$ channel. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

Search for supersymmetry at $\sqrt{s}=13$  TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J. C76 (2016) 259, 2016.
Inspire Record 1424844 DOI 10.17182/hepdata.72792
24 data tables match query

Missing transverse momentum distribution after SR0b3j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qq(\tilde\ell\ell/\tilde\nu\nu)$, $m_{\tilde g}=1.3$ TeV, $m_{\tilde\chi_1^0}=0.5$ TeV) is also shown.

Missing transverse momentum distribution after SR0b5j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qqWZ\tilde\chi_1^0$, $m_{\tilde g}=1.1$ TeV, $m_{\tilde\chi_1^0}=0.4$ TeV) is also shown.

Missing transverse momentum distribution after SR1b selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde b_1\tilde b_1^*$, $\tilde b_1\to tW\tilde\chi_1^0$, $m_{\tilde b_1}=600$ GeV, $m_{\tilde\chi_1^0}=50$ GeV) is also shown.

More…

Search for new phenomena in events with a photon and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 1606 (2016) 059, 2016.
Inspire Record 1442359 DOI 10.17182/hepdata.72855
10 data tables match query

Distribution of missing transverse momentum, reconstructed treating muons as non-interacting particles, in the data and for the background in the 1muCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

Distribution of missing transverse momentum, reconstructed treating muons as non-interacting particles, in the data and for the background in the 2muCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

Distribution of missing transverse momentum, reconstructed treating electrons as non-interacting particles, in the data and for the background in the 2eleCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

More…

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett. B761 (2016) 136-157, 2016.
Inspire Record 1468168 DOI 10.17182/hepdata.73120
2 data tables match query

Measured cross-section for $t\bar{t}$ events using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s}$=13 TeV.

Measured fiducial cross-section for $t\bar{t}$ events producing an $e\mu$ pair, each lepton originating directly from t $\rightarrow$ W $\rightarrow$ l or via a leptonic $\tau$ decay t $\rightarrow$ W $\rightarrow$ $\tau$ $\rightarrow$ l and satisfying p$_{\mathrm{T}} > $ 25 GeV and $|\eta| <$ 2.5.


Search for heavy long-lived charged $R$-hadrons with the ATLAS detector in 3.2 fb$^{-1}$ of proton--proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett. B760 (2016) 647-665, 2016.
Inspire Record 1470936 DOI 10.17182/hepdata.73717

A search for heavy long-lived charged R -hadrons is reported using a data sample corresponding to 3.2 fb −1 of proton–proton collisions at s=13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R -hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

18 data tables match query

Distributions of beta for data and simulation after a Zmumu selection. The values given for the mean and width are taken from Gaussian functions matched to data and simulation.

Data (black dots) and background estimates (red solid line) for m_beta for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

Data (black dots) and background estimates (red solid line) for m_betagamma for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

More…

Search for bottom squark pair production in proton–proton collisions at $\sqrt{s}=13$  TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J. C76 (2016) 547, 2016.
Inspire Record 1472822 DOI 10.17182/hepdata.74005
37 data tables match query

Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.

Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.

Signal region (SR) providing the best expected sensitivity in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane.

More…

Charged-particle distributions at low transverse momentum in $\sqrt{s} = 13$  TeV pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J. C76 (2016) 502, 2016.
Inspire Record 1467230 DOI 10.17182/hepdata.73907
10 data tables match query

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The extrapolated ($\tau > 30$ ps) average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.

More…

Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
2016.
Inspire Record 1458952 DOI 10.17182/hepdata.73806

The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.

89 data tables match query

The distribution of the missing transverse momentum is shown in hard-lepton 6-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.

The distribution of the missing transverse momentum is shown in hard-lepton 6-jet W+jets control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.

The distribution of the missing transverse momentum is shown in soft-lepton 2-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.

More…

Search for pair production of gluinos decaying via stop and sbottom in events with $b$-jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev. D94 (2016) 032003, 2016.
Inspire Record 1466302 DOI 10.17182/hepdata.61814

A search for supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino (χ˜10) is reported. It uses an LHC proton-proton data set at a center-of-mass energy s=13  TeV with an integrated luminosity of 3.2  fb-1 collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as b jets, large missing transverse momentum, and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For χ˜10 masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% C.L. in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the s=8  TeV data set.

35 data tables match query

Distribution of missing transverse energy for SR-Gbb-B.

Distribution of missing transverse energy for SR-Gtt-0L-C.

Distribution of missing transverse energy for SR-Gtt-1L-A.

More…

Search for dark matter at $\sqrt{s}=13$ TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J. C77 (2017) 393, 2017.
Inspire Record 1591328 DOI 10.17182/hepdata.77382

Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb$^{-1}$   of proton–proton collisions at a centre-of-mass energy of $13~\mathrm{TeV}$ , is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750– $1200~\mathrm{GeV}$ for dark-matter candidate masses below 230– $480~\mathrm{GeV}$ at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale $M_{*}$ to be above $790~\mathrm{GeV}$ at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to $Z\gamma $ and the Z boson subsequently decays into neutrinos.

24 data tables match query

Observed event yields in 36.1 fb$^{-1}$ of data compared to expected yields from SM backgrounds in all signal regions, as predicted from the simultaneous fit to their respective CRs. The first three lines report the yields obtained from the inclusive-SR fit, while the two last lines report the yields obtained from the multiple-bin fit. The uncertainty includes both the statistical and systematic uncertainties.

The observed 95% CL exclusion contour for a simplified model of dark-matter production involving an axial-vector operator, Dirac DM and couplings $g_{q}$ = 0.25, $g_{\chi}$ = 1 and $g_{l}$ = 0 as a function of the dark-matter mass $m_{\chi}$ and the mediator mass $m_{\mathrm{med}}$. The plane under the limit curve is excluded.

The expected 95% CL exclusion contour (+1$\sigma$) for a simplified model of dark-matter production involving an axial-vector operator, Dirac DM and couplings $g_{q}$ = 0.25, $g_{\chi}$ = 1 and $g_{l}$ = 0 as a function of the dark-matter mass $m_{\chi}$ and the mediator mass $m_{\mathrm{med}}$. The plane under the limit curve is excluded.

More…

Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev. D94 (2016) 052009, 2016.
Inspire Record 1469069 DOI 10.17182/hepdata.74125

The results of a search for the top squark, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC pp collision data at a center-of-mass energy of s=13  TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2  fb−1. The analysis targets two types of signal models: gluino-mediated pair production of top squarks with a nearly mass-degenerate top squark and neutralino and direct pair production of top squarks, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and top squark masses are set at 95% confidence level. The results extend the LHC run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low top squark mass region and add an excluded top squark mass region from 745 to 780 GeV for the direct top squark model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vectorlike top quarks.

60 data tables match query

Comparison of data with estimated backgrounds in the $am_\text{T2}$ distribution with the STCR1 event selection except for the requirement on $am_\text{T2}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

Comparison of data with estimated backgrounds in the $b$-tagged jet multiplicity with the STCR1 event selection except for the requirement on the $b$-tagged jet multiplicity. Furthermore, the $\Delta R(b_1,b_2)$ requirement is dropped. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

Comparison of data with estimated backgrounds in the $\Delta R(b_1,b_2)$ distribution with the STCR1 event selection except for the requirement on $\Delta R(b_1,b_2)$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

More…

Version 5
Search for squarks and gluinos in final states with jets and missing transverse momentum using 36  fb$^{-1}$ of $\sqrt{s}=13$  TeV pp collision data with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev. D97 (2018) 112001, 2018.
Inspire Record 1641270 DOI 10.17182/hepdata.77891

A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in s=13  TeV proton-proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1  fb-1. The results are interpreted in the context of various models where squarks and gluinos are pair produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.

508 data tables match query

Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.

Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.

Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where squarks have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.