Searches for exclusive Higgs and $Z$ boson decays into a vector quarkonium state and a photon using $139$ fb$^{-1}$ of ATLAS $\sqrt{s}=13$ TeV proton$-$proton collision data

The ATLAS collaboration
CERN-EP-2022-128, 2022.
Inspire Record 2132750 DOI 10.17182/hepdata.132657

Searches for the exclusive decays of Higgs and $Z$ bosons into a vector quarkonium state and a photon are performed in the $\mu^+\mu^- \gamma$ final state with a proton$-$proton collision data sample corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The observed data are compatible with the expected backgrounds. The 95% CL$_\mathrm{s}$ upper limits on the branching fractions of the Higgs boson decays into $J/\psi \gamma$, $\psi(2S) \gamma$, and $\Upsilon(1S,2S,3S) \gamma$ are found to be $2.1\times10^{-4}$, $10.9\times10^{-4}$, and $(2.6,4.4,3.5)\times10^{-4}$, respectively, assuming Standard Model production of the Higgs boson. The corresponding 95% CL$_\mathrm{s}$ upper limits on the branching fractions of the $Z$ boson decays are $1.2\times10^{-6}$, $2.3\times10^{-6}$, and $(1.0,1.2,2.3)\times10^{-6}$.

2 data tables match query

Numbers of observed and expected background events for the $m_{\mu^+\mu^-\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-3}$, respectively. The ranges in $m_{\mu^+\mu^-}$ are centred around each quarkonium resonance, with a width driven by the resolution of the detector; in particular, the ranges for the $\Upsilon(nS)$ resonances are based on the resolution in the endcaps. It is noted that the discrepancy between the observed and expected backgrounds for $m_{\mu^+\mu^-} = 9.0$-$9.8$ GeV in the endcaps was found to have a small impact on the observed limit for $Z\rightarrow\Upsilon(1S)\,\gamma$.

Expected, with the corresponding $\pm 1\sigma$ intervals, and observed 95% CL branching fraction upper limits for the Higgs and $Z$ boson decays into a quarkonium state and a photon. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross section times branching fraction $\sigma\times\mathcal{B}$ are also shown.


Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration
CERN-EP-2022-132, 2022.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

176 data tables match query

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

More…

Version 2
Measurement of jet activity produced in top-quark events with an electron, a muon and two $b$-tagged jets in the final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 220, 2017.
Inspire Record 1495243 DOI 10.17182/hepdata.77436

Measurements of jet activity in top-quark pair events produced in proton--proton collisions are presented, using 3.2 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Events are chosen by requiring an opposite-charge $e\mu$ pair and two $b$-tagged jets in the final state. The normalised differential cross-sections of top-quark pair production are presented as functions of additional-jet multiplicity and transverse momentum, $p_{\mathrm T}$. The fraction of signal events that do not contain additional jet activity in a given rapidity region, the gap fraction, is measured as a function of the $p_{\mathrm T}$ threshold for additional jets, and is also presented for different invariant mass regions of the $e\mu b\bar{b}$ system. All measurements are corrected for detector effects and presented as particle-level distributions compared to predictions with different theoretical approaches for QCD radiation. While the kinematics of the jets from top-quark decays are described well, the generators show differing levels of agreement with the measurements of observables that depend on the production of additional jets.

23 data tables match query

Multiplicity of additional jets with pt>25GeV

Multiplicity of additional jets with pt>40GeV

Multiplicity of additional jets with pt>60GeV

More…

Measurement of the cross section for isolated-photon plus jet production in $pp$ collisions at $\sqrt s=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 780 (2018) 578-602, 2018.
Inspire Record 1645627 DOI 10.17182/hepdata.78401

The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb$^{-1}$. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-$k_t$ algorithm with radius parameter $R=0.4$ and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements.

5 data tables match query

Measured cross sections for isolated-photon plus jet production as a function of $E_{\rm T}^{\gamma}$.

Measured cross sections for isolated-photon plus jet production as a function of $p_{\rm T}^{\rm jet-lead}$.

Measured cross sections for isolated-photon plus jet production as a function of $\Delta\phi^{\rm \gamma-jet\ lead}$.

More…

Measurement of the $W^+W^-$ production cross section in $pp$ collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 773 (2017) 354-374, 2017.
Inspire Record 1513473 DOI 10.17182/hepdata.79847

The production of opposite-charge $W$-boson pairs in proton-proton collisions at $\sqrt{s}$ = 13 TeV is measured using data corresponding to 3.16 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the CERN Large Hadron Collider in 2015. Candidate $W$-boson pairs are selected by identifying their leptonic decays into an electron, a muon and neutrinos. Events with reconstructed jets are not included in the candidate event sample. The cross-section measurement is performed in a fiducial phase space close to the experimental acceptance and is compared to theoretical predictions. Agreement is found between the measurement and the most accurate calculations available.

5 data tables match query

The measured fiducial cross section P P --> WW --> $e^\pm \mu^\mp$.

Detailed breakdown of the systematic uncertainties in the fiducial cross-section measurement as a result of the simultaneous fit to signal and control regions. Summarised in Table 4 of the paper.

Systematic uncertainty correlation matrix for the fiducial cross section.

More…

Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 195, 2018.
Inspire Record 1634970 DOI 10.17182/hepdata.79952

Inclusive jet and dijet cross-sections are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses a dataset with an integrated luminosity of 3.2 fb$^{-1}$ recorded in 2015 with the ATLAS detector at the Large Hadron Collider. Jets are identified using the anti-${k_t}$ algorithm with a radius parameter value of $R=0.4$. The inclusive jet cross-sections are measured double-differentially as a function of the jet transverse momentum, covering the range from 100 GeV to 3.5 TeV, and the absolute jet rapidity up to $|y|=3$. The double-differential dijet production cross-sections are presented as a function of the dijet mass, covering the range from 300 GeV to 9 TeV, and the half absolute rapidity separation between the two leading jets within $|y|<3$, $y*$, up to $y*=3$. Next-to-leading-order, and next-to-next-to-leading-order for the inclusive jet measurement, perturbative QCD calculations corrected for non-perturbative and electroweak effects are compared to the measured cross-sections.

12 data tables match query

rapidity bin 0 < |Y| < 0.5 anti-kt R=0.4

rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.4

rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.4

More…

Measurement of the cross section for inclusive isolated-photon production in $pp$ collisions at $\sqrt s=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 770 (2017) 473-493, 2017.
Inspire Record 1510441 DOI 10.17182/hepdata.79798

Inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb$^{-1}$. The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.

8 data tables match query

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<1.37$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $1.56<|\eta^{\gamma}|<1.81$.

More…

Measurements of differential cross sections of top quark pair production in association with jets in ${pp}$ collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2018) 159, 2018.
Inspire Record 1656578 DOI 10.17182/hepdata.81950

Measurements of differential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from $pp$ collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.

115 data tables match query

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and $p_{T}^{t,had}$ in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and $p_{T}^{t\bar{t}}$ in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

More…

Observation of electroweak $W^{\pm}Z$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 793 (2019) 469-492, 2019.
Inspire Record 1711223 DOI 10.17182/hepdata.83785

An observation of electroweak $W^{\pm}Z$ production in association with two jets in proton-proton collisions is presented. The data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV are used, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events containing three identified leptons, either electrons or muons, and two jets are selected. The electroweak production of $W^{\pm}Z$ bosons in association with two jets is measured with an observed significance of 5.3 standard deviations. A fiducial cross-section for electroweak production including interference effects is measured to be $\sigma_{WZjj\mathrm{-EW}} = 0.57 \; ^{+ 0.14} _{- 0.13} \,(\mathrm{stat.}) \; ^{+ 0.07} _{- 0.06} \,(\mathrm{syst.}) \; \mathrm{fb}$. Total and differential fiducial cross-sections of the sum of $W^\pm Z jj$ electroweak and strong productions for several kinematic observables are also measured.

21 data tables match query

Fiducial cross section of the electroweak $W^{\pm}Z$ boson pair production in association with two jets. The first systematic uncertainty is experimental, the second is the theory modelling and interference systematics and the third one is the luminosity uncertainty.

Fiducial cross section of the $W^{\pm}Z$ boson pair production in association with two jets. The first systematic uncertainty is experimental, the second is the theory modelling and interference systematics and the third one is the luminosity uncertainty.

Numbers of observed and expected events in the $W^{\pm}Zjj$ signal region and in the three control regions, before the fit. The expected number of $WZjj-EW$ events from $SHERPA$ and the estimated number of background events from the other processes are shown. The sum of the background containing misidentified leptons is labelled "Misid. leptons". The total uncertainties are quoted.

More…

Measurement of $W^{\pm}Z$ production cross sections and gauge boson polarisation in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 535, 2019.
Inspire Record 1720438 DOI 10.17182/hepdata.83701

This paper presents measurements of $W^{\pm}Z$ production cross sections in $pp$ collisions at a centre-of-mass energy of 13 TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1 fb$^{-1}$. The $W^{\pm}Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.7 \pm 1.0$ (stat.) $\pm 2.3$ (syst.) $\pm 1.4$ (lumi.) fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of $61.5^{+1.4}_{-1.3}$ fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of $W$ and $Z$ bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the $W$ and $Z$ bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.

24 data tables match query

The measured $W^{\pm}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{+}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{-}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

More…