Showing 10 of 117 results
This paper describes a search for dark photons ($\gamma_d$) in Higgs boson decay ($H \to \gamma\gamma_d$) produced in proton-proton collisions through the $ZH$ production mode at the Large Hadron Collider at $\sqrt{s}=13$ TeV. The transverse mass of the photon and the missing transverse momentum from the non-interacting $\gamma_d$ would present a distinctive signature at the Higgs boson mass resonance. The results presented use the total Run-2 integrated luminosity of 139 fb$^{-1}$, recorded by the ATLAS detector at the LHC . The dominant reducible background processes have been estimated using data-driven techniques. A Boosted Decision Tree (BDT) technique was adopted to enhance the sensitivity of the search. Given that no excess is observed with respect to the Standard Model predictions, an observed (expected) upper limit on the branching ratio BR$(H\to \gamma\gamma_d)$ of 2.28$\%$ (2.82$^{+1.33}_{-0.84}\%$) is set at 95$\%$ CL for massless $\gamma_d$. For higher dark photons masses up to 40 GeV, the observed (expected) upper limits at 95$\%$ CL are found to be within the [2.19-2.52]$\%$ ([2.71-3.11]$\%$) range.
Distribution of the BDT classifier response for data and for the expected SM background before the background-only fit. The expectations for the signal are also shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties shown are statistical for data, while for backgrounds include statistical and systematic sources.
Distribution of the BDT classifier response for data and for the expected SM background after the background-only fit. The expectations for the signal are also shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties shown are statistical for data, while for backgrounds include statistical and systematic sources determined by the multiple-bin fit.
Background, data and signal yields in bins of BDT, in SR and VV$\gamma$ CR, after the background-only fit. The expectations for the signal are shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties are statistical for data, while for backgrounds include statistical and systematic sources.
Summary of the impact of different categories of systematic uncertainties on the background estimate in BDT bins, after the background-only fit. The individual uncertainties can be correlated and do not necessarily add in quadrature to equal the total background uncertainty.
Observed and expected exclusion limits at 95% CL on BR(H$\to\gamma\gamma_d$) as function of the $\gamma_d$ mass.
Background, data and signal yields in bins of BDT, in the SR and in the VV$\gamma$ CR, before the background-only fit. The expectations for the signal are shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties are statistical for data, while for backgrounds include statistical and systematic sources.
Number of events after each cut in SR for 139fb$^{-1}$ for ZH, H$\to\gamma\gamma_d$ considering BR=5% and massless dark photon. Generator-level filters are applied on the total events. Only the statistical uncertainty is shown.
Distribution of the BDT classifier response in data and for the expected SM background after the background-only fit, in the ee channel. The expectations for signal are also shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties shown are statistical for data, while for backgrounds include statistical and systematic sources.
Distribution of the BDT classifier response for data and for the expected SM background after the background-only fit, in the $\mu\mu$ channel. The expectations for signal are also shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties shown are statistical for data, while for backgrounds include statistical and systematic sources.
Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^{*} \to 4\ell$ ($\ell = e,\mu$) decay channel. The results are based on proton$-$proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^{*} \to 4\ell$ process is measured to be $\sigma_\mathrm{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\mathrm{fid, SM} = 3.41 \pm 0.18 $ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.
Fractional uncertainties for the inclusive fiducial and total cross sections, and range of systematic uncertainties for the differential measurements. The columns e/$\mu$ and jets represent the experimental uncertainties in lepton and jet reconstruction and identification, respectively. The Z + jets, $t\bar{t}$, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The $ZZ^{*}$ theory ($ZZ^{*}$ th.) uncertainties include the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled Comp. contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the nearest 0.5%, except for the luminosity uncertainty which has been measured to be 1.7%.
Expected (pre-fit) and observed number of events in the four decay final states after the event selection, in the mass range 115< $m_{4l}$ < 130 GeV. The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data. Combined statistical and systematic uncertainties are included for the predictions.
The fiducial and total cross sections of Higgs boson production measured in the 4l final state. The fiducial cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all final states ($\sigma_{sum}$), as well as by combining the per-final state measurements assuming SM $ZZ^{*} \to 4l$ relative branching ratios ($\sigma_{comb}$). For the total cross section ($\sigma_{tot}$), the Higgs boson branching ratio at $m_{H}$= 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fiducial cross section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. The p-values indicating the compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions.
Correlation matrix between the fiducial cross sections for the four individual decay final states and the $ZZ^{*}$ normalisation factor.
Differential fiducial cross section for the transverse momentum $p_{T}^{4l}$ of the Higgs boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 . Measured value in the last bin is un upper limit at 95% CL.
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum $p_{T}^{4l}$ of the Higgs boson.
Differential fiducial cross section for the invariant mass $m_{12}$ of the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass $m_{12}$ of the leading Z boson.
Differential fiducial cross section for the invariant mass $m_{34}$ of the subleading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass $m_{34}$ of the subleading Z boson.
Differential fiducial cross section for the rapidity $|y_{4l}|$ of the Higgs boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the rapidity $|y_{4l}|$ of the Higgs boson.
Differential fiducial cross section for the production angle $|\cos\theta^{*}|$ of the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $|\cos\theta^{*}|$ of the leading Z boson.
Differential fiducial cross section for the production angle $\cos\theta_{1}$ of the anti-lepton from the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $\cos\theta_{1}$ of the anti-lepton from the leading Z boson.
Differential fiducial cross section for the production angle $\cos\theta_{2}$ of the anti-lepton from the subleading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $\cos\theta_{2}$ of the anti-lepton from the subleading Z boson.
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons.
Differential fiducial cross section for the azimuthal angle $\phi_{1}$ of the decay plane of the leading Z boson and the plane formed between its four-momentum and the z-axis. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi_{1}$ of the decay plane of the leading Z boson and the plane formed between its four-momentum and the z-axis.
Differential fiducial cross section for the jet multiplicity $N_{jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the jet multiplicity $N_{jets}$.
Differential fiducial cross section for the inclusive jet multiplicity $N_{jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the number of b-quark initiated jets $N_{b-jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the number of b-quark initiated jets $N_{b-jets}$.
Differential fiducial cross section for the transverse momentum of the leading jet $p_{T}^{lead.jet}$ in events with at least one jet. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet $p_{T}^{lead.jet}$ in events with at least one jet.
Differential fiducial cross section for the transverse momentum of the subleading jet $p_{T}^{sublead.jet}$ in events with at least two jets. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the subleading jet $p_{T}^{sublead.jet}$ in events with at least two jets.
Differential fiducial cross section for the invariant mass of the two highest-pT jets $m_{jj}$ in events with at least two jets. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the two highest-pT jets $m_{jj}$ in events with at least two jets.
Differential fiducial cross section for the distance between the two highest-pT jets in pseudorapidity $\Delta\eta_{jj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the distance between the two highest-pT jets in pseudorapidity $\Delta\eta_{jj}$.
Differential fiducial cross section for the distance between the two highest-pT jets in $\phi$ $\Delta\phi_{jj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the distance between the two highest-pT jets in $\phi$ $\Delta\phi_{jj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus jet system, in events with at least one jet $p_{T}^{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus jet system, in events with at least one jet $p_{T}^{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus di-jet system, in events with at least two jets $p_{T}^{4ljj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 . Measured value in the last bin is un upper limit at 95% CL.
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus di-jet system, in events with at least two jets $p_{T}^{4ljj}$.
Differential fiducial cross section for the invariant mass of the four lepton plus jet system in events with at least one jet $m_{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the four lepton plus jet system in events with at least one jet $m_{4lj}$.
Differential fiducial cross section for the invariant mass of the four lepton plus di-jet system in events with at least two jets $m_{4ljj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the four lepton plus di-jet system in events with at least two jets $m_{4ljj}$.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $ll\mu\mu$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $llee$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass m12 vs. m34 in $ll\mu\mu$ and $llee$ final states.
Differential fiducial cross section of the $p_{T}^{4l}$ distribution in $|y_{4l}|$ bins. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section of the $p_{T}^{4l}$ distribution in $|y_{4l}|$ bins.
Differential fiducial cross section of the $p_{T}^{4l}$ distribution in $N_{jets}$ bins. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section of the $p_{T}^{4l}$ distribution in $N_{jets}$ bins.
Differential fiducial cross section for transverse momentum of the four lepton system vs. the transverse momentum of the four lepton plus jet system $p_{T}^{4l}$vs.$p_{T}^{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for transverse momentum of the four lepton system vs. the transverse momentum of the four lepton plus jet system $p_{T}^{4l}$vs.$p_{T}^{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus jet system vs the invariant mass of the four lepton plus jet system $p_{T}^{4l}$vs.$m_{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus jet system vs the invariant mass of the four lepton plus jet system $p_{T}^{4l}$vs.$m_{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton vs the transverse momentum of the leading jet $p_{T}^{4l}$vs.$p_{T}^{l.jet}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton vs the transverse momentum of the leading jet $p_{T}^{4l}$vs.$p_{T}^{lead.jet}$.
Differential fiducial cross section for the transverse momentum of the leading jet vs the rapidity of the leading jet $p_{T}^{lead.jet}$vs.$|y^{lead.jet}|$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet vs the rapidity of the leading jet $p_{T}^{lead.jet}$vs.$|y^{lead.jet}|$.
Differential fiducial cross section for the transverse momentum of the leading jet vs the transverse momentum of the subleading jet $p_{T}^{lead.jet}$vs.$p_{T}^{sublead.jet}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet vs the transverse momentum of the subleading jet $p_{T}^{lead.jet}$vs.$p_{T}^{sublead.jet}$.
Differential fiducial cross section for the leading Z boson mass $m_{12}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading Z boson mass $m_{12}$ in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading Z boson mass $m_{12}$ in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $2\mu2e$ and $2e2\mu$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $4l$ and $2l2l$ final states.
This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for HMT events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter λ as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 71 ≤ n<sub>ch</sub> < 80 for the minimum-bias (MB) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 231 ≤ n<sub>ch</sub> < 300 for the high-multiplicity track (HMT) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative multiplicity region 3.09 < m<sub>ch</sub> ≤ 3.86. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative k<sub>T</sub> region 400 < k<sub>T</sub> ≤500 MeV. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
Systematic uncertainties (in percent) in the correlation strength, λ, and source radius, R, for the exponential fit of the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), for p<sub>T</sub> > 100 MeV at √s= 13 TeV for the MB and HMT events. The choice of MC generator gives rise to asymmetric uncertainties, denoted by uparrow and downarrow. This asymmetry propagates through to the cumulative uncertainty. The columns under ‘Uncertainty range’ show the range of systematic uncertainty from the fits in the various n<sub>ch</sub> intervals.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the average rescaled charged-particle multiplicity, m<sub>ch</sub>, for |η| < 2.5 and both p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and the high-multiplicity track (HMT) events. The parameters γ and δ resulting from a joint fit to the MB and HMT data are presented. The total uncertainties are shown.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the pair average transverse momentum, k<sub>T</sub>, for various functional forms and for minimum-bias (MB) and high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV. The total uncertainties are shown.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
A search for dark-matter particles in events with large missing transverse momentum and a Higgs boson candidate decaying into two photons is reported. The search uses $139$ fb$^{-1}$ of proton-proton collision data collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN LHC between 2015 and 2018. No significant excess of events over the Standard Model predictions is observed. The results are interpreted by extracting limits on three simplified models that include either vector or pseudoscalar mediators and predict a final state with a pair of dark-matter candidates and a Higgs boson decaying into two photons.
The $E^{miss}_{T}$ distribution of data and MC after the diphoton selection.
The observed exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.
The expected exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.
The +1 $\sigma$ band of the observed exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.
The -1 $\sigma$ band of the observed exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.
A comparison of the inferred limits to the constraints from direct detection experiments on the spin-independent DM--nucleon cross section in the context of the $Z'_B$ simplified model with vector couplings. Limits are shown at 90% CL.
The observed exclusion contor for the $Z^{\prime}$-2HDM model in the $m_{A}$-$m_{Z^{\prime}}$ plane.
The expected exclusion contor for the $Z^{\prime}$-2HDM model in the $m_{A}$-$m_{Z^{\prime}}$ plane.
The +1 $\sigma$ band of the observed exclusion contor for the $m_{A}$-$Z^{\prime}$-2HDM model in the $m_{Z^{\prime}}$ plane.
The -1 $\sigma$ band of the observed exclusion contor for the $m_{A}$-$Z^{\prime}$-2HDM model in the $m_{Z^{\prime}}$ plane.
The observed exclusion contor for the 2HDM-a model in the $m_{A}$-$m_{a}$ plane.
The expected exclusion contor for the 2HDM-a model in the $m_{A}$-$m_{a}$ plane.
The +1 $\sigma$ band of the observed exclusion contor for the 2HDM-a model in the $m_{A}$-$m_{a}$ plane.
The -1 $\sigma$ band of the observed exclusion contor for the 2HDM-a model in the $m_{A}$-$m_{a}$ plane.
The observed exclusion contor for the 2HDM-a model in the $tan\beta$-$m_{a}$ plane.
The expected exclusion contor for the 2HDM-a model in the $tan\beta$-$m_{a}$ plane.
The +1 $\sigma$ band of the observed exclusion contor for the 2HDM-a model in the $tan\beta$-$m_{a}$ plane.
The -1 $\sigma$ band of the observed exclusion contor for the 2HDM-a model in the $tan\beta$-$m_{a}$ plane.
The exclusion limits at 95% CL for the 2HDM+a model as a function of $\sin \theta$ for $m_{A,H^{\pm},H}$= 600GeV, $m_a$ = 200GeV, $\tan \beta$ = 1.0$.
The exclusion limits at 95% CL for the 2HDM+a model as a function of $\sin \theta$ for $m_{A,H^{\pm},H}$= 1000GeV, $m_a$ = 350GeV, $\tan \beta$ = 1.0$.
Breakdown of the dominant systematic uncertainties.
Event yields in the range of 120 $<m_{\gamma\gamma}<$ 130 GeV for data, signal models, the SM Higgs boson background and non-resonant background in each analysis category, for an integrated luminosity of $139$fb$^{-1}$.
Detailed background contributions from the SM Higgs boson and continuum background for each cut
Detailed contributions from the signals for each cut.
Acceptance times efficiency for several signals in each category.
The ATLAS experiment at the Large Hadron Collider reports a search for charged-lepton-flavour violation in decays of $Z$ bosons into a τ lepton and an electron or muon of opposite charge.
The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 3-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the VRSS for the $e\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the VRSS for the $e\tau$ channel for events with 3-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the SR for the $e\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the SR for the $e\tau$ channel for events with 3-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the SR for the $\mu\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the SR for the $\mu\tau$ channel for events with 3-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
Observed and expected upper limits on $\mathcal{B}(Z\rightarrow\ell\tau)$ at 95% confidence level.
This paper reports on a search for the electroweak diboson ($WW/WZ/ZZ$) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 35.5 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying $W/Z$ boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of $WW/WZ/ZZ$ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be $45.1 \pm 8.6(\mathrm{stat.}) ^{+15.9} _{-14.6} (\mathrm{syst.})$ fb.
Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. The three lepton channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).
Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. in the three lepton channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).
This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a $Z$ boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb$^{-1}$. Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the $Z$ boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underlying-event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.
Figure 09d, mean sumPt toward, toward region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 09c, mean sumPt transmin, transmin region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 09b, mean nTracks toward, toward region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 09a, mean nTracks transmin, transmin region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 10b, mean meanPt toward, toward region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 10a, mean meanPt transmin, transmin region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 04c from auxiliary figures, mean sumPt toward low thrust, toward region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 11c, mean sumPt transmin low thrust, transmin region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 04a from auxiliary figures, mean nTracks toward low thrust, toward region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 11a, mean nTracks transmin low thrust, transmin region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 06a from auxiliary figures, mean meanPt toward low thrust, toward region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 12a, mean meanPt transmin low thrust, transmin region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 04d from auxiliary figures, mean sumPt toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 11d, mean sumPt transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 04b from auxiliary figures, mean nTracks toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 11b, mean nTracks transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 06b from auxiliary figures, mean meanPt toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 12b, mean meanPt transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01a from auxiliary figures, ptSpec toward_zptregion2, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02a from auxiliary figures, ptSpec toward_zptregion7, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04a, ptSpec transmin_zptregion2, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05a, ptSpec transmin_zptregion7, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01b from auxiliary figures, nTracks toward_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02b from auxiliary figures, nTracks toward_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04b, nTracks transmin_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05b, nTracks transmin_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01c from auxiliary figures, sumPt toward_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02c from auxiliary figures, sumPt toward_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04c, sumPt transmin_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05c, sumPt transmin_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01d from auxiliary figures, meanPt toward_zptregion2, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02d from auxiliary figures, meanPt toward_zptregion7, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04d, meanPt transmin_zptregion2, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05d, meanPt transmin_zptregion7, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 03a from auxiliary figures, ptSpec toward_zptregion2 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 03c from auxiliary figures, ptSpec toward_zptregion7 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 06a, ptSpec transmin_zptregion2 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 06c, ptSpec transmin_zptregion7 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 05a from auxiliary figures, nTracks toward_zptregion2 low thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 07a, nTracks transmin_zptregion2 low thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$