Showing 10 of 690 results
The production of exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The measurement is performed for a dimuon invariant mass of 12 GeV $<m_{\mu^+\mu^-}<$ 70 GeV. The integrated cross-section is determined within a fiducial acceptance region of the ATLAS detector and differential cross-sections are measured as a function of the dimuon invariant mass. The results are compared to theoretical predictions that include corrections for absorptive effects.
A measurement of the $ZZ$ production in the $\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $\ell^{-}\ell^{+}\nu\bar{\nu}$ channels $(\ell = e, \mu)$ in proton--proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to \ell^{-}\ell^{+}\nu\bar{\nu}$ are measured in selected phase-space regions. The total cross section for $ZZ$ events produced with both $Z$ bosons in the mass range 66 to 116 GeV is measured from the combination of the two channels to be $7.3\pm0.4\textrm{(stat)}\pm0.3\textrm{(syst)}\pm0.2\textrm{(lumi)}$ pb, which is consistent with the Standard Model prediction of $6.6^{+0.7}_{-0.6}$ pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading $Z$ boson is used to set limits on anomalous neutral triple gauge boson couplings in $ZZ$ production.
This Letter reports a measurement of the exclusive $\gamma\gamma\rightarrow \ell^+\ell^- (\ell=e, \mu)$ cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of $4.6$ fb$^{-1}$. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be $\sigma_{\gamma\gamma\rightarrow e^+e^-}^{\mathrm{excl.}} = 0.428 \pm 0.035 (\mathrm{stat.}) \pm 0.018 (\mathrm{syst.})$ pb for a phase-space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum $p_\mathrm{T}>12$ GeV and pseudorapidity $|\eta|<2.4$. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum $p_\mathrm{T}>10$ GeV and pseudorapidity $|\eta|<2.4$, the cross-section is determined to be $\sigma_{\gamma\gamma\rightarrow \mu^+\mu^- }^{\mathrm{excl.}} = 0.628 \pm 0.032 (\mathrm{stat.}) \pm 0.021 (\mathrm{syst.})$ pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.
Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 $\mu$b$^{-1}$. The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.
This paper describes a search for dark photons ($\gamma_d$) in Higgs boson decay ($H \to \gamma\gamma_d$) produced in proton-proton collisions through the $ZH$ production mode at the Large Hadron Collider at $\sqrt{s}=13$ TeV. The transverse mass of the photon and the missing transverse momentum from the non-interacting $\gamma_d$ would present a distinctive signature at the Higgs boson mass resonance. The results presented use the total Run-2 integrated luminosity of 139 fb$^{-1}$, recorded by the ATLAS detector at the LHC . The dominant reducible background processes have been estimated using data-driven techniques. A Boosted Decision Tree (BDT) technique was adopted to enhance the sensitivity of the search. Given that no excess is observed with respect to the Standard Model predictions, an observed (expected) upper limit on the branching ratio BR$(H\to \gamma\gamma_d)$ of 2.28$\%$ (2.82$^{+1.33}_{-0.84}\%$) is set at 95$\%$ CL for massless $\gamma_d$. For higher dark photons masses up to 40 GeV, the observed (expected) upper limits at 95$\%$ CL are found to be within the [2.19-2.52]$\%$ ([2.71-3.11]$\%$) range.
Distribution of the BDT classifier response for data and for the expected SM background before the background-only fit. The expectations for the signal are also shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties shown are statistical for data, while for backgrounds include statistical and systematic sources.
Distribution of the BDT classifier response for data and for the expected SM background after the background-only fit. The expectations for the signal are also shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties shown are statistical for data, while for backgrounds include statistical and systematic sources determined by the multiple-bin fit.
Background, data and signal yields in bins of BDT, in SR and VV$\gamma$ CR, after the background-only fit. The expectations for the signal are shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties are statistical for data, while for backgrounds include statistical and systematic sources.
Summary of the impact of different categories of systematic uncertainties on the background estimate in BDT bins, after the background-only fit. The individual uncertainties can be correlated and do not necessarily add in quadrature to equal the total background uncertainty.
Observed and expected exclusion limits at 95% CL on BR(H$\to\gamma\gamma_d$) as function of the $\gamma_d$ mass.
Background, data and signal yields in bins of BDT, in the SR and in the VV$\gamma$ CR, before the background-only fit. The expectations for the signal are shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties are statistical for data, while for backgrounds include statistical and systematic sources.
Number of events after each cut in SR for 139fb$^{-1}$ for ZH, H$\to\gamma\gamma_d$ considering BR=5% and massless dark photon. Generator-level filters are applied on the total events. Only the statistical uncertainty is shown.
Distribution of the BDT classifier response in data and for the expected SM background after the background-only fit, in the ee channel. The expectations for signal are also shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties shown are statistical for data, while for backgrounds include statistical and systematic sources.
Distribution of the BDT classifier response for data and for the expected SM background after the background-only fit, in the $\mu\mu$ channel. The expectations for signal are also shown for the massless dark photon and for dark photon mass values of 20 GeV and 40 GeV, assuming BR(H$\to\gamma\gamma_d$) = 5%. Uncertainties shown are statistical for data, while for backgrounds include statistical and systematic sources.
Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^{*} \to 4\ell$ ($\ell = e,\mu$) decay channel. The results are based on proton$-$proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^{*} \to 4\ell$ process is measured to be $\sigma_\mathrm{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\mathrm{fid, SM} = 3.41 \pm 0.18 $ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.
Fractional uncertainties for the inclusive fiducial and total cross sections, and range of systematic uncertainties for the differential measurements. The columns e/$\mu$ and jets represent the experimental uncertainties in lepton and jet reconstruction and identification, respectively. The Z + jets, $t\bar{t}$, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The $ZZ^{*}$ theory ($ZZ^{*}$ th.) uncertainties include the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled Comp. contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the nearest 0.5%, except for the luminosity uncertainty which has been measured to be 1.7%.
Expected (pre-fit) and observed number of events in the four decay final states after the event selection, in the mass range 115< $m_{4l}$ < 130 GeV. The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data. Combined statistical and systematic uncertainties are included for the predictions.
The fiducial and total cross sections of Higgs boson production measured in the 4l final state. The fiducial cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all final states ($\sigma_{sum}$), as well as by combining the per-final state measurements assuming SM $ZZ^{*} \to 4l$ relative branching ratios ($\sigma_{comb}$). For the total cross section ($\sigma_{tot}$), the Higgs boson branching ratio at $m_{H}$= 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fiducial cross section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. The p-values indicating the compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions.
Correlation matrix between the fiducial cross sections for the four individual decay final states and the $ZZ^{*}$ normalisation factor.
Differential fiducial cross section for the transverse momentum $p_{T}^{4l}$ of the Higgs boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 . Measured value in the last bin is un upper limit at 95% CL.
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum $p_{T}^{4l}$ of the Higgs boson.
Differential fiducial cross section for the invariant mass $m_{12}$ of the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass $m_{12}$ of the leading Z boson.
Differential fiducial cross section for the invariant mass $m_{34}$ of the subleading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass $m_{34}$ of the subleading Z boson.
Differential fiducial cross section for the rapidity $|y_{4l}|$ of the Higgs boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the rapidity $|y_{4l}|$ of the Higgs boson.
Differential fiducial cross section for the production angle $|\cos\theta^{*}|$ of the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $|\cos\theta^{*}|$ of the leading Z boson.
Differential fiducial cross section for the production angle $\cos\theta_{1}$ of the anti-lepton from the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $\cos\theta_{1}$ of the anti-lepton from the leading Z boson.
Differential fiducial cross section for the production angle $\cos\theta_{2}$ of the anti-lepton from the subleading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $\cos\theta_{2}$ of the anti-lepton from the subleading Z boson.
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons.
Differential fiducial cross section for the azimuthal angle $\phi_{1}$ of the decay plane of the leading Z boson and the plane formed between its four-momentum and the z-axis. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi_{1}$ of the decay plane of the leading Z boson and the plane formed between its four-momentum and the z-axis.
Differential fiducial cross section for the jet multiplicity $N_{jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the jet multiplicity $N_{jets}$.
Differential fiducial cross section for the inclusive jet multiplicity $N_{jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the number of b-quark initiated jets $N_{b-jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the number of b-quark initiated jets $N_{b-jets}$.
Differential fiducial cross section for the transverse momentum of the leading jet $p_{T}^{lead.jet}$ in events with at least one jet. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet $p_{T}^{lead.jet}$ in events with at least one jet.
Differential fiducial cross section for the transverse momentum of the subleading jet $p_{T}^{sublead.jet}$ in events with at least two jets. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the subleading jet $p_{T}^{sublead.jet}$ in events with at least two jets.
Differential fiducial cross section for the invariant mass of the two highest-pT jets $m_{jj}$ in events with at least two jets. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the two highest-pT jets $m_{jj}$ in events with at least two jets.
Differential fiducial cross section for the distance between the two highest-pT jets in pseudorapidity $\Delta\eta_{jj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the distance between the two highest-pT jets in pseudorapidity $\Delta\eta_{jj}$.
Differential fiducial cross section for the distance between the two highest-pT jets in $\phi$ $\Delta\phi_{jj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the distance between the two highest-pT jets in $\phi$ $\Delta\phi_{jj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus jet system, in events with at least one jet $p_{T}^{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus jet system, in events with at least one jet $p_{T}^{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus di-jet system, in events with at least two jets $p_{T}^{4ljj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 . Measured value in the last bin is un upper limit at 95% CL.
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus di-jet system, in events with at least two jets $p_{T}^{4ljj}$.
Differential fiducial cross section for the invariant mass of the four lepton plus jet system in events with at least one jet $m_{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the four lepton plus jet system in events with at least one jet $m_{4lj}$.
Differential fiducial cross section for the invariant mass of the four lepton plus di-jet system in events with at least two jets $m_{4ljj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the four lepton plus di-jet system in events with at least two jets $m_{4ljj}$.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $ll\mu\mu$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $llee$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass m12 vs. m34 in $ll\mu\mu$ and $llee$ final states.
Differential fiducial cross section of the $p_{T}^{4l}$ distribution in $|y_{4l}|$ bins. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section of the $p_{T}^{4l}$ distribution in $|y_{4l}|$ bins.
Differential fiducial cross section of the $p_{T}^{4l}$ distribution in $N_{jets}$ bins. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section of the $p_{T}^{4l}$ distribution in $N_{jets}$ bins.
Differential fiducial cross section for transverse momentum of the four lepton system vs. the transverse momentum of the four lepton plus jet system $p_{T}^{4l}$vs.$p_{T}^{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for transverse momentum of the four lepton system vs. the transverse momentum of the four lepton plus jet system $p_{T}^{4l}$vs.$p_{T}^{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus jet system vs the invariant mass of the four lepton plus jet system $p_{T}^{4l}$vs.$m_{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus jet system vs the invariant mass of the four lepton plus jet system $p_{T}^{4l}$vs.$m_{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton vs the transverse momentum of the leading jet $p_{T}^{4l}$vs.$p_{T}^{l.jet}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton vs the transverse momentum of the leading jet $p_{T}^{4l}$vs.$p_{T}^{lead.jet}$.
Differential fiducial cross section for the transverse momentum of the leading jet vs the rapidity of the leading jet $p_{T}^{lead.jet}$vs.$|y^{lead.jet}|$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet vs the rapidity of the leading jet $p_{T}^{lead.jet}$vs.$|y^{lead.jet}|$.
Differential fiducial cross section for the transverse momentum of the leading jet vs the transverse momentum of the subleading jet $p_{T}^{lead.jet}$vs.$p_{T}^{sublead.jet}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet vs the transverse momentum of the subleading jet $p_{T}^{lead.jet}$vs.$p_{T}^{sublead.jet}$.
Differential fiducial cross section for the leading Z boson mass $m_{12}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading Z boson mass $m_{12}$ in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading Z boson mass $m_{12}$ in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $2\mu2e$ and $2e2\mu$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $4l$ and $2l2l$ final states.
Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V2{SP} over V2{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V3{SP} over V3{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V4{SP} over V4{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V5{SP} over V5{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V6{SP} over V6{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-15%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-25%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-35%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-45%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-55%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-15%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-25%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-35%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-45%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-55%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 0-5%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 10-15%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 20-25%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 30-35%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 40-45%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 50-55%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 0-5%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 10-15%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 20-25%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 30-35%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 40-45%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 50-55%
The PT scale factor for V2(PT) as a funtion of collision centrality
The PT scale factor for V3(PT) as a funtion of collision centrality
The V2 scale factor as a funtion of collision centrality
The V3 scale factor as a funtion of collision centrality
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.