Measurement of the $W+b$-jet and $W+c$-jet differential production cross sections in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 743 (2015) 6-14, 2015.
Inspire Record 1334689 DOI 10.17182/hepdata.73191

We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

3 data tables match query

The $W + b$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $W + c$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $\sigma(W+c)/\sigma(W+b)$ cross section ratio in bins of $c(b)$-jet $p_T$.


Search for additional neutral gauge bosons

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 385 (1996) 471-478, 1996.
Inspire Record 421554 DOI 10.17182/hepdata.42253

We have searched for a heavy neutral gauge boson, Z ′, using the decay channel Z ′ → ee . The data were collected with the DØ detector at the Fermilab Tevatron during the 1992–1993 p p collider run at s =1.8 TeV from an integrated luminosity of 15±1 pb −1 . Limits are set on the cross section times brancing ratio for the process p p → Z′ → ee as a function of the Z ′ mass. We exclude the existence of a Z ′ of mass less than 490 GeV/c 2 , assuming a Z ′ with the same coupling strengths to quarks and leptons as the standard model Z boson.

1 data table match query

No description provided.


Observation of the top quark

The D0 collaboration Greenlee, Herbert ;
Frascati Phys.Ser. 2 (1995) 0695-712, 1995.
Inspire Record 395692 DOI 10.17182/hepdata.43028

None

1 data table match query

The cross section was obtained aunder the assumption that top quark has a mass of 200 GeV.


Search for top squark pair production in the dielectron channel

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 57 (1998) 589-593, 1998.
Inspire Record 427311 DOI 10.17182/hepdata.41662

This report describes the first search for top squark pair production in the channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using 74.9 +- 8.9 pb~-1 of data collected using the D0 detector. A 95% confidence level upper limit on sigma*B is presented. The limit is above the theoretical expectation for sigma*B for this process, but does show the sensitivity of the current D0 data set to a particular topology for new physics.

1 data table match query

Data are extracted from the figure. Sigma*Br.


Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

154 data tables match query

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.

More…

Observation of electroweak production of a same-sign $W$ boson pair in association with two jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 123 (2019) 161801, 2019.
Inspire Record 1738841 DOI 10.17182/hepdata.84643

This Letter presents the observation and measurement of electroweak production of a same-sign $W$ boson pair in association with two jets using 36.1 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed in the detector fiducial phase-space region, defined by the presence of two same-sign leptons, electron or muon, and at least two jets with a large invariant mass and rapidity difference. A total of 122 candidate events are observed for a background expectation of $69 \pm 7$ events, corresponding to an observed signal significance of 6.5 standard deviations. The measured fiducial signal cross section is $\sigma^{\mathrm {fid.}}=2.89^{+0.51}_{-0.48} \mathrm{(stat.)} ^{+0.29}_{-0.28} \mathrm{(syst.)}$ fb.

6 data tables match query

Measured fiducial cross section.

The $m_{jj}$ distribution for events meeting all selection criteria for the signal region. Signal and individual background distributions are shown as predicted after the fit. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{jj}=3.8$ TeV.

The $m_{ll}$ distribution for events meeting all selection criteria for the signal region as predicted after the fit. The fitted signal strength and nuisance parameters have been propagated, with the exception of the uncertainties due to the interference and electroweak corrections for which a flat uncertainty is assigned. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{ll}=824$ GeV.

More…

Version 2
Probing the quantum interference between singly and doubly resonant top-quark production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 152002, 2018.
Inspire Record 1677498 DOI 10.17182/hepdata.83544

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a $W$ boson and a $b$-quark are significant. Events with exactly two leptons ($ee$, $\mu\mu$, or $e\mu$) and two $b$-tagged jets that satisfy a multi-particle invariant mass requirement are selected from $36.1$ fb$^{-1}$ of proton-proton collision data taken at $\sqrt{s}=13$ TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within $2\sigma$ of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

15 data tables match query

The minimax-mbl distribution in the three-b-tag region, constructed from the two b-jets with largest transverse momentum. The predicted tt+HF contribution from simulation is scaled to match observed data in this region. The hashed band indicates the uncertainty on the total number of predicted events, where the DR scheme is used to estimate the minor contribution from the tW process. Uncertainties include all statistical and systematic sources.

The detector-level minimax-mbl distribution, with signal selection and background estimation as described in the text. The total predicted events are shown for both the DR and DS definitions of the tW process, with uncertainties on the respective estimates indicated by separate error bars. Uncertainties include all statistical and systematic sources.

The unfolded, normalized differential minimax-mbl cross-section compared with theoretical models of the tt+tWb signal with various implementations of interference effects. The uncertainty of each data point includes all statistical and systematic sources, while uncertainties for each of the MC predictions correspond to variations of the PDF set and renormalization and factorization scales.

More…

Version 2
Measurement of the cross-section for W boson production in association with b-jets in pp collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 06 (2013) 084, 2013.
Inspire Record 1219109 DOI 10.17182/hepdata.66629

This paper reports a measurement of the W+b-jets production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb-1, collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range, using jets reconstructed with the anti-k_t clustering algorithm with transverse momentum above 25 GeV and rapidity within +/- 2.1. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with next-to-leading order QCD calculations within 1.5 standard deviations.

15 data tables match query

Measured fiducial $W+b$-jets cross-sections for the combination of the electron and muon channels with statistical and systematic uncertainties and breakdown of relative systematic uncertainties per jet multiplicity, and combined across jet bins. Also shown are the cross sections obtained without single-top subtraction.

Breakdown of relative systematic uncertainties per jet multiplicity, and combined across jet bins.

Measured fiducial $W+b$-jets cross-section in the 1-jet region with statistical and systematic uncertainties in bins of $p_T^{b-jet}$. Also shown are the cross sections obtained without single-top subtraction. UPDATE (04 MAY 2019): units corrected from nb/GeV to fb/GeV.

More…

Evidence for the production of three massive vectorbosons in $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
PoS DIS2019 (2019) 135, 2019.
Inspire Record 1726499 DOI 10.17182/hepdata.89323

A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.

2 data tables match query

Measurement of the $WWW$ cross section.

Measurement of the $WWZ$ cross section.


Version 2
Measurement of Higgs boson decay into $b$-quarks in associated production with a top-quark pair in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 097, 2022.
Inspire Record 1967501 DOI 10.17182/hepdata.114360

The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.

74 data tables match query

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.

More…