We present a measurement of the cross section for $Z$ production times the branching fraction to $\tau$ leptons, $\sigma \cdot$Br$(Z\to \tau^+ \tau^-)$, in $p \bar p$ collisions at $\sqrt{s}=$1.96 TeV in the channel in which one $\tau$ decays into $\mu \nu_{\mu} \nu_{\tau}$, and the other into $\rm {hadrons} + \nu_{\tau}$ or $e \nu_e \nu_{\tau}$. The data sample corresponds to an integrated luminosity of 226 pb$^{-1}$ collected with the D{\O}detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain $\sigma \cdot$Br$(Z \to \tau^+ \tau^-)=237 \pm 15$(stat)$\pm 18$(sys)$ \pm 15$(lum) pb, in agreement with the standard model prediction.
Measured cross section times branching ratio.
We present a measurement of the top quark pair ($t\bar{t}$) production cross section ($\sigma_{t\bar{t}}$) in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using 230 pb$^{-1}$ of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the $t\bar{t}$ purity of the selected sample. For a top quark mass of 175 GeV, we measure $\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.)$ pb, in agreement with the standard model expectation.
TTBAR production cross section. Error contains statistical and systematics (excluding the luminosity uncertainty).
We present a measurement of the ttbar cross section using high-multiplicity jet events produced in ppbar collisions at sqrt{s}=1.96 TeV. These data were recorded at the Fermilab Tevatron collider with the D0 detector. Events with at least six jets, two of them identified as b jets, were selected from a 1 fb-1 data set. The measured cross section, assuming a top quark mass of 175 GeV/c^2, is 6.9 \pm 2.0 pb, in agreement with theoretical expectations.
Measured top topbar cross section at two values of the top mass.
Inclusive dijet production at large pseudorapidity intervals (delta_eta) between the two jets has been suggested as a regime for observing BFKL dynamics. We have measured the dijet cross section for large delta_eta in ppbar collisions at sqrt{s}=1800 and 630 GeV using the DO detector. The partonic cross section increases strongly with the size of delta_eta. The observed growth is even stronger than expected on the basis of BFKL resummation in the leading logarithmic approximation. The growth of the partonic cross section can be accommodated with an effective BFKL intercept of a_{BFKL}(20GeV)=1.65+/-0.07.
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).
We present the first model-independent measurement of the helicity of $W$ bosons produced in top quark decays, based on a 1 fb$^{-1}$ sample of candidate $t\bar{t}$ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider. We reconstruct the angle $\theta^*$ between the momenta of the down-type fermion and the top quark in the $W$ boson rest frame for each top quark decay. A fit of the resulting \costheta distribution finds that the fraction of longitudinal $W$ bosons $f_0 = 0.425 \pm 0.166 \hbox{(stat.)} \pm 0.102 \hbox{(syst.)}$ and the fraction of right-handed $W$ bosons $f_+ = 0.119 \pm 0.090 \hbox{(stat.)} \pm 0.053 \hbox{(syst.)}$, which is consistent at the 30% C.L. with the standard model.
COS(THETA*) distribution for leptonic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for hadronic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for W decay in dilepton events.. Data are read from plots and errors are statistcial (sqrt(N)).
We present a measurement of the ttbar pair production cross section in ppbar collisions at sqrt(s) = 1.96 TeV utilizing approximately 425 pb-1 of data collected with the D0 detector. We consider decay channels containing two high pT charged leptons (either e or \mu) from leptonic decays of both top-daughter W bosons. These were gathered using four sets of selection criteria, three of which required that a pair of fully identified leptons (i.e., e\mu, ee, or \mu\mu) be found. The fourth approach imposed less restrictive criteria on one of the lepton candidates and required that at least one hadronic jet in each event be tagged as containing a b quark. For a top quark mass of 175 GeV, the measured cross section is 7.4 +/-1.4(stat} +/- 1.0(syst) pb.
TOP TOPBAR production cross section for top quark mass 175 GeV.
TOP TOPBAR production cross section for the current Tevatron average top quark mass 170.9 GeV.. Error contains both statistics and systematics.
We measure the ttbar production cross section in ppbar collisions at sqrt{s}=1.96 TeV in the lepton+jets channel. Two complementary methods discriminate between signal and background, b-tagging and a kinematic likelihood discriminant. Based on 0.9 fb-1 of data collected by the D0 detector at the Fermilab Tevatron Collider, we measure sigma_ttbar=7.62+/-0.85 pb, assuming the current world average m_t=172.6 GeV. We compare our cross section measurement with theory predictions to determine a value for the top quark mass of 170+/-7 GeV.
The combined result for the TOP TOPBAR production cross section at top quark mass of 175 GeV.. The second DSYS error is the uncertainty on the luminosity.
The cross section for TOP TOPBAR production at the world average top quark mass of 172.6 GeV.. Errors contain both statistics and systematics.
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV utilizing 425 pb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair containing one high-pT electron or muon and at least four jets. We exploit specific kinematic features of ttbar events to extract the cross section. For a top quark mass of 175 GeV, we measure sigma_ttbar = 6.4 +1.3-1.2(stat} +/- 0.7(syst)+/- 0.4(lum) pb in good agreement with the standard model prediction.
TOP TOPBAR production cross section.
We present a measurement of the top quark pair (ttbar) production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb-1 of data collected by the DO detector at the Fermilab Tevatron Collider. We select events in the dilepton final states ee, emu and mumu based on kinematical properties consistent with ttbar events. For a top quark mass of 175 GeV, we measure a top pair production cross section sigma(ttbar) = 8.6 +3.2-2.7 (stat) +/-1.1 (syst) +/-0.6 (lumi) pb, in good agreement with the standard model prediction.
TTBAR production cross section.
A change in estimated integrated luminosity (from 226 pb$^{-1} to 257 pb$^{-1}$ leads to a corrected value for ${\sigma (p \bar p \to Z) \cdot}$Br${(Z \to \tau \tau)}$ of $209\pm13(stat.)\pm16(syst.)\pm13(lum) pb.
Total cross section for W boson pair production. The second systematic (DSYS) error is due to the uncertainty in the luminosity.