Showing 17 of 17 results
A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.
Distribution of missing transverse energy for SR-Gbb-B.
Distribution of missing transverse energy for SR-Gtt-0L-C.
Distribution of missing transverse energy for SR-Gtt-1L-A.
Expected 95% CL exclusion contour for the Gbb signal.
Observed 95% CL exclusion contour for the Gbb signal.
Expected 95% CL exclusion contour for the Gtt combination.
Observed 95% CL exclusion contour for the Gtt combination.
Acceptances for the Gbb model in SR-Gbb-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gbb model in SR-Gbb-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gbb model in SR-Gbb-C. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-C. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-1L-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-1L-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptance times efficiency for the Gbb model in SR-Gbb-A.
Acceptance times efficiency for the Gbb model in SR-Gbb-B.
Acceptance times efficiency for the Gbb model in SR-Gbb-C.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-A.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-B.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-C.
Acceptance times efficiency for the Gtt model in SR-Gtt-1L-A.
Acceptance times efficiency for the Gtt model in SR-Gtt-1L-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1L-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1L-B.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gbb model.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gtt model for the 0-lepton channel.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gtt model for the 1-lepton channel.
Combination of two 0-lepton and 1-lepton signal regions yielding the best expected sensitivity for each point of the parameter space in the Gtt model.
Results are presented of a search for supersymmetric particles in events with large missing transverse momentum and at least one heavy flavour jet candidate in sqrt{s} = 7 TeV proton-proton collisions. In a data sample corresponding to an integrated luminosity of 35 pb-1 recorded by the ATLAS experiment at the Large Hadron Collider, no significant excess is observed with respect to the prediction for Standard Model processes. For R-parity conserving models in which sbottoms (stops) are the only squarks to appear in the gluino decay cascade, gluino masses below 590 GeV (520 GeV) are excluded at the 95% C.L. The results are also interpreted in an MSUGRA/CMSSM supersymmetry breaking scenario with tan(beta)=40 and in an SO(10) model framework.
Distribution of the effective mass for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the missing ET for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the effective mass for data and the SM expectation in the one-lepton plus 2 jet channel.
Distribution of the missing ET for data and the SM expectation in the one-lepton plus 2 jet channel.
Observed 95 PCT exclusion limit in the M(gluino), M(sbottom) plane obtained with the zero-lepton channel data.
Expected 95 PCT exclusion limit in the M(gluino), M(sbottom) plane obtained with the zero-lepton channel data.
Observed and expected 95 PCT CL upper limits on the gluino-mediated and stop pair production cross section as a function of the gluino mass for a stop mass od 180 GeV, for the one-lepton analysis.
Observed and expected 95 PCT CL upper limits on the gluino-mediated and stop pair production cross section as a function of the gluino mass for a stop mass od 210 GeV, for the one-lepton analysis.
Observed 95 PCT CL exclusion limits from the zero-lepton analysis on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Expected 95 PCT CL exclusion limits from the zero-lepton analysis on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Observed 95 PCT CL exclusion limits from the one-lepton analysis on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Expected 95 PCT CL exclusion limits from the one-lepton analysis on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Observed 95 PCT CL exclusion limits from the combined zero and one-lepton analyses on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Expected 95 PCT CL exclusion limits from the combined zero and one-lepton analyses on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton--proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton--proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb$^{-1}$. The search selected events with various jet multiplicities from $\ge 7$ to $\ge 10$ jets, and with various $b$-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 7ej50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 6ej80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Observed 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the pMSSM grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the pMSSM grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the pMSSM grid.
+1 sigma excursion of the expected 95% CL limit for the pMSSM grid.
-1 sigma excursion of the expected 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the 2Step grid.
Observed 95% CL limit for the 2Step grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the 2Step grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the 2Step grid.
+1 sigma excursion of the expected 95% CL limit for the 2Step grid.
-1 sigma excursion of the expected 95% CL limit for the 2Step grid.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Degree of multijet closure for signal and vaidation regions with at no b-jet requirement. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions with at least 1 b-jet. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions with at least 2 b-jets. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Summary of all 15 signal regions (post-fit).
Signal region yielding the best-expected CLs value, the best expected CLs value, and the corresponding observed CLs value for the 2Step grid.
Signal region yielding the best-expected CLs value, the best expected CLs value, and the corresponding observed CLs value for the pMSSM grid.
95% CLs observed upper limit on model cross-section for 2-step signal points for the best-expected signal region.
Performance of the 8j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in $\sqrt{s}=$ 13 TeV proton--proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb$^{-1}$ of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
Observed and expected background effective mass distributions in control region CRgamma for SR4jt.
Observed and expected background effective mass distributions in control region CRW for SR4jt.
Observed and expected background effective mass distributions in control region CRT for SR4jt.
Observed and expected background and signal effective mass distributions for SR2jl. For signal, a squark direct decay model with $m(\tilde q)=800$ GeV and $m(\tilde\chi^0_1)=400$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jm. For signal, a gluino direct decay model with $m(\tilde g)=750$ GeV and $m(\tilde\chi^0_1)=660$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jt. For signal, a squark direct decay model with $m(\tilde q)=1200$ GeV and $m(\tilde\chi^0_1)=0$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR4jt. For signal, a gluino direct decay model with $m(\tilde g)=1400$ GeV and $m(\tilde\chi^0_1)=0$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j. For signal, a gluino one-step decay model with $m(\tilde g)=1265$ GeV, $m(\tilde\chi^\pm_1)=945$ GeV and $m(\tilde\chi^0_1)=625$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR6jm. For signal, a gluino one-step decay model with $m(\tilde g)=1265$ GeV, $m(\tilde\chi^\pm_1)=945$ GeV and $m(\tilde\chi^0_1)=625$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR6jt. For signal, a gluino one-step decay model with $m(\tilde g)=1385$ GeV, $m(\tilde\chi^\pm_1)=705$ GeV and $m(\tilde\chi^0_1)=25$ GeV is shown.
Expected limit at 95% CL for squark direct decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for squark direct decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for squark direct decay model grid.
Observed limits at 95% CL for squark direct decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for squark direct decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for squark direct decay model grid.
Expected limit at 95% CL for gluino direct decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino direct decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino direct decay model grid.
Observed limits at 95% CL for gluino direct decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for gluino direct decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for gluino direct decay model grid.
Expected limit at 95% CL for gluino one-step decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino one-step decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino one-step decay model grid.
Observed limits at 95% CL for gluino one-step decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for gluino one-step decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for gluino one-step decay model grid.
Observed and expected background effective mass distributions in control region CRgamma for SR2jl.
Observed and expected background effective mass distributions in validation region VRZ for SR2jl.
Observed and expected background effective mass distributions in control region CRW for SR2jl.
Observed and expected background effective mass distributions in control region CRT for SR2jl.
Observed and expected background effective mass distributions in control region CRgamma for SR2jm.
Observed and expected background effective mass distributions in validation region VRZ for SR2jm.
Observed and expected background effective mass distributions in control region CRW for SR2jm.
Observed and expected background effective mass distributions in control region CRT for SR2jm.
Observed and expected background effective mass distributions in control region CRgamma for SR2jt.
Observed and expected background effective mass distributions in validation region VRZ for SR2jt.
Observed and expected background effective mass distributions in control region CRW for SR2jt.
Observed and expected background effective mass distributions in control region CRT for SR2jt.
Observed and expected background effective mass distributions in control region CRgamma for SR4jt.
Observed and expected background effective mass distributions in validation region VRZ for SR4jt.
Observed and expected background effective mass distributions in control region CRW for SR4jt.
Observed and expected background effective mass distributions in control region CRT for SR4jt.
Observed and expected background effective mass distributions in control region CRgamma for SR5j.
Observed and expected background effective mass distributions in validation region VRZ for SR5j.
Observed and expected background effective mass distributions in control region CRW for SR5j.
Observed and expected background effective mass distributions in control region CRT for SR5j.
Observed and expected background effective mass distributions in control region CRgamma for SR6jm.
Observed and expected background effective mass distributions in validation region VRZ for SR6jm.
Observed and expected background effective mass distributions in control region CRW for SR6jm.
Observed and expected background effective mass distributions in control region CRT for SR6jm.
Observed and expected background effective mass distributions in control region CRgamma for SR6jt.
Observed and expected background effective mass distributions in validation region VRZ for SR6jt.
Observed and expected background effective mass distributions in control region CRW for SR6jt.
Observed and expected background effective mass distributions in control region CRT for SR6jt.
Observed and expected event yields in VRZ as a function of signal region.
Observed and expected event yields in VRW as a function of signal region.
Observed and expected event yields in VRWv as a function of signal region.
Observed and expected event yields in VRT as a function of signal region.
Observed and expected event yields in VRTv as a function of signal region.
Observed and expected event yields in VRQa as a function of signal region.
Observed and expected event yields in VRQb as a function of signal region.
Signal acceptance for SR2jl in squark direct decay model grid.
Signal acceptance times efficiency for SR2jl in squark direct decay model grid.
Signal acceptance for SR2jm in squark direct decay model grid.
Signal acceptance times efficiency for SR2jm in squark direct decay model grid.
Signal acceptance for SR2jt in squark direct decay model grid.
Signal acceptance times efficiency for SR2jt in squark direct decay model grid.
Signal acceptance for SR4jt in squark direct decay model grid.
Signal acceptance times efficiency for SR4jt in squark direct decay model grid.
Signal acceptance for SR5j in squark direct decay model grid.
Signal acceptance times efficiency for SR5j in squark direct decay model grid.
Signal acceptance for SR6jm in squark direct decay model grid.
Signal acceptance times efficiency for SR6jm in squark direct decay model grid.
Signal acceptance for SR6jt in squark direct decay model grid.
Signal acceptance times efficiency for SR6jt in squark direct decay model grid.
Signal acceptance for SR2jl in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jl in gluino direct decay model grid.
Signal acceptance for SR2jm in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jm in gluino direct decay model grid.
Signal acceptance for SR2jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jt in gluino direct decay model grid.
Signal acceptance for SR4jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR4jt in gluino direct decay model grid.
Signal acceptance for SR5j in gluino direct decay model grid.
Signal acceptance times efficiency for SR5j in gluino direct decay model grid.
Signal acceptance for SR6jm in gluino direct decay model grid.
Signal acceptance times efficiency for SR6jm in gluino direct decay model grid.
Signal acceptance for SR6jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR6jt in gluino direct decay model grid.
Signal acceptance for SR2jl in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jl in gluino one-step decay model grid.
Signal acceptance for SR2jm in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jm in gluino one-step decay model grid.
Signal acceptance for SR2j5 in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jt in gluino one-step decay model grid.
Signal acceptance for SR4jt in gluino one-step decay model grid.
Signal acceptance times efficiency for SR4jt in gluino one-step decay model grid.
Signal acceptance for SR5j in gluino one-step decay model grid.
Signal acceptance times efficiency for SR5j in gluino one-step decay model grid.
Signal acceptance for SR6jm in gluino one-step decay model grid.
Signal acceptance times efficiency for SR6jm in gluino one-step decay model grid.
Signal acceptance for SR6jt in gluino one-step decay model grid.
Signal acceptance times efficiency for SR6jt in gluino one-step decay model grid.
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where squarks have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2200. For signal, a gluino direct decay model where squarks have mass of 1800 GeV and the neutralino1 has mass of 800 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 500 GeV is shown.
Expected 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
'Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 32.1 fb$^{-1}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Cut-flow of Meff-2j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Cut-flow of Meff-5j,6j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Cut-flow for RJR-based SR's targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Cut-flow for RJR-based SR's targeting compressed mass-spectra signals for SS direct and GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
A search for supersymmetry involving the pair production of gluinos decaying via third-generation squarks into the lightest neutralino ($\displaystyle\tilde\chi^0_1$) is reported. It uses LHC proton--proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from $b$-quarks. To increase the sensitivity, the sample is divided into subsamples based on the presence or absence of electrons or muons. No excess is found above the predicted background. For $\displaystyle\tilde\chi^0_1$ masses below approximately 300 GeV, gluino masses of less than 1.97 (1.92) TeV are excluded at 95% confidence level in simplified models involving the pair production of gluinos that decay via top (bottom) squarks. An interpretation of the limits in terms of the branching ratios of the gluinos into third-generation squarks is also provided. These results improve upon the exclusion limits obtained with the 3.2 fb$^{-1}$ of data collected in 2015.
Observed 95% CL exclusion contour for Gtt model.
Expected 95% CL exclusion contour for Gtt model.
Observed 95% CL exclusion contour for Gbb model.
Expected 95% CL exclusion contour for Gbb model.
Expected 95% CL exclusion contour for Gluino mass = 1.8 TeV, Neutralino mass = 1 GeV.
Observed 95% CL exclusion contour for Gluino mass = 1.8 TeV, Neutralino mass = 1 GeV.
Expected 95% CL exclusion contour for Gluino mass = 1.9 TeV, Neutralino mass = 1 GeV.
Observed 95% CL exclusion contour for Gluino mass = 1.9 TeV, Neutralino mass = 1 GeV.
Expected 95% CL exclusion contour for Gluino mass = 2.0 TeV, Neutralino mass = 1 GeV.
Observed 95% CL exclusion contour for Gluino mass = 2.0 TeV, Neutralino mass = 1 GeV.
Expected 95% CL exclusion contour for Gluino mass = 1.9 TeV, Neutralino mass = 1 GeV.
Observed 95% CL exclusion contour for Gluino mass = 1.9 TeV, Neutralino mass = 1 GeV.
Expected 95% CL exclusion contour for Gluino mass = 1.9 TeV, Neutralino mass = 600 GeV.
Observed 95% CL exclusion contour for Gluino mass = 1.9 TeV, Neutralino mass = 600 GeV.
Expected 95% CL exclusion contour for Gluino mass = 1.9 TeV, Neutralino mass = 1 TeV.
Observed 95% CL exclusion contour for Gluino mass = 1.9 TeV, Neutralino mass = 1 TeV.
Distribution of ETMISS for SR-Gbb-VC.
Distribution of ETMISS for SR-Gtt-1l-B.
Distribution of ETMISS for SR-1L-II.
Distribution of ETMISS for SR-0L-HI.
Distribution of ETMISS for SR-0L-HH.
Acceptances for Gbb model in SR-Gbb-B.
Acceptances for Gbb model in SR-Gbb-M.
Acceptances for Gbb model in SR-Gbb-C.
Acceptances for Gbb model in SR-Gbb-VC.
Acceptances for Gtt model in SR-Gtt-0l-B.
Acceptances for Gtt model in SR-Gtt-0l-M.
Acceptances for Gtt model in SR-Gtt-0l-C.
Acceptances for Gtt model in SR-Gtt-1l-B.
Acceptances for Gtt model in SR-Gtt-1l-M.
Acceptances for Gtt model in SR-Gtt-1l-C.
Experimental efficiencies for Gbb model in SR-Gbb-B.
Experimental efficiencies for Gbb model in SR-Gbb-M.
Experimental efficiencies for Gbb model in SR-Gbb-C.
Experimental efficiencies for Gbb model in SR-Gbb-VC.
Experimental efficiencies for Gtt model in SR-Gtt-0l-B.
Experimental efficiencies for Gtt model in SR-Gtt-0l-M.
Experimental efficiencies for Gtt model in SR-Gtt-0l-C.
Experimental efficiencies for Gtt model in SR-Gtt-1l-B.
Experimental efficiencies for Gtt model in SR-Gtt-1l-M.
Experimental efficiencies for Gtt model in SR-Gtt-0l-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-M.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-VC.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0l-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0l-M.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0l-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1l-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1l-M.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1l-C.
Observed 95% CL exclusion contour for Gbb model in SR-Gbb-B.
Expected 95% CL exclusion contour for Gbb model in SR-Gbb-B.
Observed 95% CL exclusion contour for Gbb model in SR-Gbb-M.
Expected 95% CL exclusion contour for Gbb model in SR-Gbb-M.
Observed 95% CL exclusion contour for Gbb model in SR-Gbb-C.
Expected 95% CL exclusion contour for Gbb model in SR-Gbb-C.
Observed 95% CL exclusion contour for Gbb model in SR-Gbb-VC.
Expected 95% CL exclusion contour for Gbb model in SR-Gbb-VC.
Observed 95% CL exclusion contour for Gtt model in SR-Gtt-0l-B.
Expected 95% CL exclusion contour for Gtt model in SR-Gtt-0l-B.
Observed 95% CL exclusion contour for Gtt model in SR-Gtt-0l-M.
Expected 95% CL exclusion contour for Gtt model in SR-Gtt-0l-M.
Observed 95% CL exclusion contour for Gtt model in SR-Gtt-0l-C.
Expected 95% CL exclusion contour for Gtt model in SR-Gtt-0l-C.
Observed 95% CL exclusion contour for Gtt model in SR-Gtt-1l-B.
Expected 95% CL exclusion contour for Gtt model in SR-Gtt-1l-B.
Observed 95% CL exclusion contour for Gtt model in SR-Gtt-1l-M.
Expected 95% CL exclusion contour for Gtt model in SR-Gtt-1l-M.
Observed 95% CL exclusion contour for Gtt model in SR-Gtt-1l-C.
Expected 95% CL exclusion contour for Gtt model in SR-Gtt-1l-C.
Expected number of signal events after each step of the Gbb-0L-B selection for a Gbb signal point (MGLUON,MNEUTRALINO) = (1900,1400) GeV.
Expected number of signal events after each step of the Gbb-0L-M selection for a Gbb signal point (MGLUON,MNEUTRALINO) = (1900,1400) GeV.
Expected number of signal events after each step of the Gbb-0L-C selection for a Gbb signal point (MGLUON,MNEUTRALINO) = (1900,1400) GeV.
Expected number of signal events after each step of the Gbb-0L-VC selection for a Gbb signal point (MGLUON,MNEUTRALINO) = (1900,1400) GeV.
Expected number of signal events after each step of the Gtt-1L-B selection for a Gtt signal point (MGLUON,MNEUTRALINO) = (1900,1) GeV.
Expected number of signal events after each step of the Gtt-1L-M selection for a Gtt signal point (MGLUON,MNEUTRALINO) = (1900,1) GeV.
Expected number of signal events after each step of the Gtt-1L-C selection for a Gtt signal point (MGLUON,MNEUTRALINO) = (1900,1) GeV.
Expected number of signal events after each step of the Gtt-0L-B selection for a Gtt signal point (MGLUON,MNEUTRALINO) = (1900,1) GeV.
Expected number of signal events after each step of the Gtt-0L-M selection for a Gtt signal point (MGLUON,MNEUTRALINO) = (1900,1) GeV.
Expected number of signal events after each step of the Gtt-0L-C selection for a Gtt signal point (MGLUON,MNEUTRALINO) = (1900,1) GeV.
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge or at least three isolated leptons. The search also utilises $b$-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb$^{-1}$. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95% confidence level up to 1.1-1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550-850 GeV for gluino masses around 1 TeV.
Missing transverse momentum distribution after SR0b3j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qq(\tilde\ell\ell/\tilde\nu\nu)$, $m_{\tilde g}=1.3$ TeV, $m_{\tilde\chi_1^0}=0.5$ TeV) is also shown.