Showing 10 of 51 results
Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at $\sqrt{s_{NN}}$ = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |$\eta$| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-$k_t$ algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," $R_{cp}$. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. $R_{cp}$ varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.
Glauber model calculation of the mean numbers of Npart and its associated errors, the mean Ncoll ratios, and Rcoll with fractional errors as a function of the centrality bins.
The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 0 - 10 %.
The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 10 - 20 %.
The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 20 - 30 %.
The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 30 - 40 %.
The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 40 - 50 %.
The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 50 - 60 %.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 38.36 - 44.21 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 44.21 - 50.94 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 50.94 - 58.70 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 58.70 - 67.64 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 67.64 - 77.94 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 77.94 - 89.81 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 89.81 - 103.5 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 103.5 - 119.3 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 119.3 - 137.4 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 137.4 - 158.3 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 158.3 - 182.5 GeV.
The Rcp values as a function of the mean number of participating nucleons, NPART, for the four R values, 0.2, 0.3, 0.4 and 0.5 for the jet PT range 182.5 - 210.3 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 38.36 - 44.21 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 38.36 - 44.21 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 44.21 - 50.94 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 44.21 - 50.94 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 50.94 - 58.70 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 50.94 - 58.70 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 58.70 - 67.64 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 58.70 - 67.64 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 67.64 - 77.94 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 67.64 - 77.94 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 77.94 - 89.81 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 77.94 - 89.81 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 89.81 - 103.5 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 89.81 - 103.5 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 103.5 - 119.3 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 103.5 - 119.3 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 119.3 - 137.4 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 119.3 - 137.4 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 137.4 - 158.3 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 137.4 - 158.3 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 158.3 - 182.5 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 158.3 - 182.5 GeV.
The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 182.5 - 210.3 GeV.
The Rcp values as a function of R for the three centrality ranges 30 - 40 %, 40 - 50 % and 50 - 60 % for the jet PT range 182.5 - 210.3 GeV.
The ratios of Rcp between R=0.3, 0.4 and 0.5 and R=0.2 jets as a function of the jet PT for the centrality range 0 - 10 %.
The ratios of Rcp between R=0.3, 0.4 and 0.5 and R=0.2 jets as a function of the jet PT for the centrality range 10 - 20 %.
The ratios of Rcp between R=0.3, 0.4 and 0.5 and R=0.2 jets as a function of the jet PT for the centrality range 20 - 30 %.
The ratios of Rcp between R=0.3, 0.4 and 0.5 and R=0.2 jets as a function of the jet PT for the centrality range 30 - 40 %.
The ratios of Rcp between R=0.3, 0.4 and 0.5 and R=0.2 jets as a function of the jet PT for the centrality range 40 - 50 %.
The ratios of Rcp between R=0.3, 0.4 and 0.5 and R=0.2 jets as a function of the jet PT for the centrality range 50 - 60 %.
The covariance matrix for statistcal correlations for R = 0.2 and centrality range 0 - 10 %.
The covariance matrix for statistcal correlations for R = 0.3 and centrality range 0 - 10 %.
The covariance matrix for statistcal correlations for R = 0.4 and centrality range 0 - 10 %.
The covariance matrix for statistcal correlations for R = 0.5 and centrality range 0 - 10 %.
The covariance matrix for statistcal correlations for R = 0.2 and centrality range 10 - 20 %.
The covariance matrix for statistcal correlations for R = 0.3 and centrality range 10 - 20 %.
The covariance matrix for statistcal correlations for R = 0.4 and centrality range 10 - 20 %.
The covariance matrix for statistcal correlations for R = 0.5 and centrality range 10 - 20 %.
The covariance matrix for statistcal correlations for R = 0.2 and centrality range 20 - 30 %.
The covariance matrix for statistcal correlations for R = 0.3 and centrality range 20 - 30 %.
The covariance matrix for statistcal correlations for R = 0.4 and centrality range 20 - 30 %.
The covariance matrix for statistcal correlations for R = 0.5 and centrality range 20 - 30 %.
The covariance matrix for statistcal correlations for R = 0.2 and centrality range 30 - 40 %.
The covariance matrix for statistcal correlations for R = 0.3 and centrality range 30 - 40 %.
The covariance matrix for statistcal correlations for R = 0.4 and centrality range 30 - 40 %.
The covariance matrix for statistcal correlations for R = 0.5 and centrality range 30 - 40 %.
The covariance matrix for statistcal correlations for R = 0.2 and centrality range 40 - 50 %.
The covariance matrix for statistcal correlations for R = 0.3 and centrality range 40 - 50 %.
The covariance matrix for statistcal correlations for R = 0.4 and centrality range 40 - 50 %.
The covariance matrix for statistcal correlations for R = 0.5 and centrality range 40 - 50 %.
The covariance matrix for statistcal correlations for R = 0.2 and centrality range 50 - 60 %.
The covariance matrix for statistcal correlations for R = 0.3 and centrality range 50 - 60 %.
The covariance matrix for statistcal correlations for R = 0.4 and centrality range 50 - 60 %.
The covariance matrix for statistcal correlations for R = 0.5 and centrality range 50 - 60 %.
Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 mb^-1. This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle (phi), with the coefficients v_n denoting the magnitude of the anisotropy. Significant v_2-v_6 values are obtained as a function of transverse momentum (0.5<pT<20 GeV), pseudorapidity (|eta|<2.5) and centrality using an event plane method. The v_n values for n>=3 are found to vary weakly with both eta and centrality, and their pT dependencies are found to follow an approximate scaling relation, v_n^{1/n}(pT) \propto v_2^{1/2}(pT). A Fourier analysis of the charged particle pair distribution in relative azimuthal angle (Dphi=phi_a-phi_b) is performed to extract the coefficients v_{n,n}=<cos (n Dphi)>. For pairs of charged particles with a large pseudorapidity gap (|Deta=eta_a-eta_b|>2) and one particle with pT<3 GeV, the v_{2,2}-v_{6,6} values are found to factorize as v_{n,n}(pT^a,pT^b) ~ v_n(pT^a)v_n(pT^b) in central and mid-central events. Such factorization suggests that these values of v_{2,2}-v_{6,6} are primarily due to the response of the created matter to the fluctuations in the geometry of the initial state. A detailed study shows that the v_{1,1}(pT^a,pT^b) data are consistent with the combined contributions from a rapidity-even v_1 and global momentum conservation. A two-component fit is used to extract the v_1 contribution. The extracted v_1 is observed to cross zero at pT\sim1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v_3, and decreases at higher pT.
The EP Resolution Factor vs. Centrality for n values from2 to 6.
The Chi Reolution Factor vs. Centrality for n values from 2 to 6.
The one-dimensional Delta(PHI) correlation function vs Delta(PHI) for |DETARAP| in the range 2 to 5 summed over all n values from 1 to 6.
The Fourier coefficient V_n,n vs. |Delta(ETARAP)| for individual n values.
The Fourier coefficient V_n vs. |Delta(ETARAP)| from the 2PC anaysis for individual n values from 2 to n.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 60 TO 70%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 60 TO 70%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 60 TO 70%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 60 TO 70%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 60 TO 70%.
V_n vs PT for centrality 0 TO 5%.
V_n vs PT for centrality 5 TO 10%.
V_n vs PT for centrality 10 TO 20%.
V_n vs PT for centrality 20 TO 30%.
V_n vs PT for centrality 30 TO 40%.
V_n vs PT for centrality 40 TO 50%.
V_n vs PT for centrality 50 TO 60%.
V_n vs PT for centrality 60 TO 70%.
V_n vs Centrality for PT 1 TO 2 GeV.
V_n vs Centrality for PT 2 TO 3 GeV.
V_n vs Centrality for PT 3 TO 4 GeV.
V_n vs Centrality for PT 4 TO 8 GeV.
V_n vs Centrality for PT 8 TO 12 GeV.
V_n vs Centrality for PT 12 TO 20 GeV.
2PC.V_n vs n for Centrality 0 TO 1 %.
2PC.V_n vs n for Centrality 0 TO 5 %.
2PC.V_n vs n for Centrality 5 TO 10 %.
2PC.V_n vs n for Centrality 0 TO 10 %.
2PC.V_n vs n for Centrality 10 TO 20 %.
2PC.V_n vs n for Centrality 20 TO 30 %.
2PC.V_n vs n for Centrality 30 TO 40 %.
2PC.V_n vs n for Centrality 40 TO 50 %.
2PC.V_n vs n for Centrality 50 TO 60 %.
2PC.V_n vs n for Centrality 60 TO 70 %.
2PC.V_n vs n for Centrality 70 TO 80 %.
V_nn vs n for Centrality 0 TO 1 %.
V_nn vs n for Centrality 0 TO 5 %.
V_nn vs n for Centrality 5 TO 10 %.
V_nn vs n for Centrality 0 TO 10 %.
V_nn vs n for Centrality 10 TO 20 %.
V_nn vs n for Centrality 20 TO 30 %.
V_nn vs n for Centrality 30 TO 40 %.
V_nn vs n for Centrality 40 TO 50 %.
V_nn vs n for Centrality 50 TO 60 %.
V_nn vs n for Centrality 60 TO 70 %.
V_nn vs n for Centrality 70 TO 80 %.
correlation funcitons in various pT bins.
correlation funcitons in various pT bins.
correlation funcitons in various pT bins.
correlation funcitons in various pT bins.
v_{1,1} vs eta for different combinations of pTa and pTb. Figure 18.
v_{1,1} vs eta for different combinations of pTa and pTb. Figure 18.
v_{1,1} vs eta for different combinations of pTa and pTb. Figure 18.
v_{1,1} vs eta for different combinations of pTa and pTb. Figure 18.
v_{1} vs pT for different centrality selections, Figure 21.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 inverse nb of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt(s_NN)=2.76 TeV. The Z bosons are reconstructed via di-electron and di-muon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.
The corrected per-event rapidity distribution of Z bosons over the centrality region 0-80%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 0-5%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 5-10%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 10-20%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 20-40%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 40-80%.
Combined results for the centrality (Npart) dependence of Z boson yields divided by Ncoll for the PT range > 0 GeV/c. The systematic error includes the uncertainty in Ncoll.
Combined results for the centrality (Npart) dependence of Z boson yields divided by Ncoll for the PT range 0 to 10 GeV/c. The systematic error includes the uncertainty in Ncoll.
Combined results for the centrality (Npart) dependence of Z boson yields divided by Ncoll for the PT range 10 to 30 GeV/c. The systematic error includes the uncertainty in Ncoll.
Combined results for the centrality (Npart) dependence of Z boson yields divided by Ncoll for the PT range > 30 GeV/c. The systematic error includes the uncertainty in Ncoll.
Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.
Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.3 jets. The errors represent combined statistical and systematic uncertainties.
Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.2 jets. The errors represent combined statistical and systematic uncertainties.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Multi-particle azimuthal cumulants are measured as a function of centrality and transverse momentum using 470 $\mu$b$^{-1}$ of Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of harmonic flow coefficients $v_n$ and correlated fluctuations between two harmonics $v_n$ and $v_m$. For the first time, a non-zero four-particle cumulant is observed for dipolar flow, $v_1$. The four-particle cumulants for elliptic flow, $v_2$, and triangular flow, $v_3$, exhibit a strong centrality dependence and change sign in ultra-central collisions. This sign change is consistent with significant non-Gaussian fluctuations in $v_2$ and $v_3$. The four-particle cumulant for quadrangular flow, $v_4$, is found to change sign in mid-central collisions. Correlations between two harmonics are studied with three- and four-particle mixed-harmonic cumulants, which indicate an anti-correlation between $v_2$ and $v_3$, and a positive correlation between $v_2$ and $v_4$. These correlations decrease in strength towards central collisions and either approach zero or change sign in ultra-central collisions. To investigate the possible flow fluctuations arising from intrinsic centrality or volume fluctuations, the results are compared between two different event classes used for centrality definitions. In peripheral and mid-central collisions where the cumulant signals are large, only small differences are observed. In ultra-central collisions, the differences are much larger and transverse momentum dependent. These results provide new information to disentangle flow fluctuations from the initial and final states, as well as new insights on the influence of centrality fluctuations.
NchRec v.s. Et
<NchRec> w.r.t. Et
<Et> w.r.t. NchRec
Et distribution
NchRec distribution
v_2{2}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2}, 3-subevent, 2.0<pT<5.0 GeV
nc_2{4}, standard, 0.5<pT<5.0 GeV
nc_2{4}, standard, 1.0<pT<5.0 GeV
nc_2{4}, standard, 1.5<pT<5.0 GeV
nc_2{4}, standard, 2.0<pT<5.0 GeV
nc_3{4}, standard, 0.5<pT<5.0 GeV
nc_3{4}, standard, 1.0<pT<5.0 GeV
nc_3{4}, standard, 1.5<pT<5.0 GeV
nc_3{4}, standard, 2.0<pT<5.0 GeV
nc_4{4}, standard, 0.5<pT<5.0 GeV
nc_4{4}, standard, 1.0<pT<5.0 GeV
nc_4{4}, standard, 1.5<pT<5.0 GeV
nc_4{4}, standard, 2.0<pT<5.0 GeV
nc_2{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_2{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_2{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_2{4}, 3-subevent, 2.0<pT<5.0 GeV
nc_3{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_3{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_3{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_3{4}, 3-subevent, 2.0<pT<5.0 GeV
nc_4{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_4{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_4{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_4{4}, 3-subevent, 2.0<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 0.5<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 1.0<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 1.5<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 2.0<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 0.5<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 1.0<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 1.5<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 2.0<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 0.5<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 1.0<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 1.5<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 2.0<pT<5.0 GeV
nc_2{6}, standard, 0.5<pT<5.0 GeV
nc_2{6}, standard, 1.0<pT<5.0 GeV
nc_2{6}, standard, 1.5<pT<5.0 GeV
nc_2{6}, standard, 2.0<pT<5.0 GeV
nc_3{6}, standard, 0.5<pT<5.0 GeV
nc_3{6}, standard, 1.0<pT<5.0 GeV
nc_3{6}, standard, 1.5<pT<5.0 GeV
nc_3{6}, standard, 2.0<pT<5.0 GeV
nc_4{6}, standard, 0.5<pT<5.0 GeV
nc_4{6}, standard, 1.0<pT<5.0 GeV
nc_4{6}, standard, 1.5<pT<5.0 GeV
nc_4{6}, standard, 2.0<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 0.5<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 1.0<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 1.5<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 2.0<pT<5.0 GeV
c_1{4}, standard, 0.5<pT<5.0 GeV
c_1{4}, standard, 1.0<pT<5.0 GeV
c_1{4}, standard, 1.5<pT<5.0 GeV
c_1{4}, standard, 2.0<pT<5.0 GeV
c_1{4}, 3-subevent, 0.5<pT<5.0 GeV
c_1{4}, 3-subevent, 1.0<pT<5.0 GeV
c_1{4}, 3-subevent, 1.5<pT<5.0 GeV
c_1{4}, 3-subevent, 2.0<pT<5.0 GeV
v_1{4}, standard, 1.5<pT<5.0 GeV
v_1{4}, standard, 2.0<pT<5.0 GeV
v_1{4}, 3-subevent, 1.5<pT<5.0 GeV
v_1{4}, 3-subevent, 2.0<pT<5.0 GeV
nsc_2_3{4}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 0.5<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 1.0<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 1.5<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 2.0<pT<5.0 GeV
nsc_2_4{4}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 0.5<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 1.0<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 1.5<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 2.0<pT<5.0 GeV
nac_2{3}, standard, 0.5<pT<5.0 GeV
nac_2{3}, standard, 1.0<pT<5.0 GeV
nac_2{3}, standard, 1.5<pT<5.0 GeV
nac_2{3}, standard, 2.0<pT<5.0 GeV
nac_2{3}, 3-subevent, 0.5<pT<5.0 GeV
nac_2{3}, 3-subevent, 1.0<pT<5.0 GeV
nac_2{3}, 3-subevent, 1.5<pT<5.0 GeV
nac_2{3}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
nc_2{4, Et}, standard, 0.5<pT<5.0 GeV
nc_2{4, Et}, standard, 1.0<pT<5.0 GeV
nc_2{4, Et}, standard, 1.5<pT<5.0 GeV
nc_2{4, Et}, standard, 2.0<pT<5.0 GeV
nc_3{4, Et}, standard, 0.5<pT<5.0 GeV
nc_3{4, Et}, standard, 1.0<pT<5.0 GeV
nc_3{4, Et}, standard, 1.5<pT<5.0 GeV
nc_3{4, Et}, standard, 2.0<pT<5.0 GeV
nc_4{4, Et}, standard, 0.5<pT<5.0 GeV
nc_4{4, Et}, standard, 1.0<pT<5.0 GeV
nc_4{4, Et}, standard, 1.5<pT<5.0 GeV
nc_4{4, Et}, standard, 2.0<pT<5.0 GeV
nc_2{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_3{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_4{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_2{4, Et}, standard, 1.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_3{4, Et}, standard, 1.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_4{4, Et}, standard, 1.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{6, Et}, standard, 0.5<pT<5.0 GeV
nc_2{6, Et}, standard, 1.0<pT<5.0 GeV
nc_2{6, Et}, standard, 1.5<pT<5.0 GeV
nc_2{6, Et}, standard, 2.0<pT<5.0 GeV
nc_2{6, Nch}, standard, 0.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.0<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 2.0<pT<5.0 GeV
nc_2{6, Et}, standard, 1.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 0.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 1.0<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 1.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 2.0<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 0.5<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 1.0<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 2.0<pT<5.0 GeV
nac_2{3, Et}, standard, 0.5<pT<5.0 GeV
nac_2{3, Et}, standard, 1.0<pT<5.0 GeV
nac_2{3, Et}, standard, 1.5<pT<5.0 GeV
nac_2{3, Et}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 2.0<pT<5.0 GeV
nac_2{3, Nch}, standard, 0.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.0<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nac_2{3, Et}, standard, 1.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.5<pT<5.0 GeV
v_2{4}, standard, 0.5<pT<5.0 GeV
v_2{4}, standard, 1.0<pT<5.0 GeV
v_2{4}, standard, 1.5<pT<5.0 GeV
v_2{4}, standard, 2.0<pT<5.0 GeV
v_2{4, Et}, standard, 0.5<pT<5.0 GeV
v_2{4, Et}, standard, 1.0<pT<5.0 GeV
v_2{4, Et}, standard, 1.5<pT<5.0 GeV
v_2{4, Et}, standard, 2.0<pT<5.0 GeV
v_2{4, Nch}, standard, 0.5<pT<5.0 GeV
v_2{4, Nch}, standard, 1.0<pT<5.0 GeV
v_2{4, Nch}, standard, 1.5<pT<5.0 GeV
v_2{4, Nch}, standard, 2.0<pT<5.0 GeV
v_3{4}, standard, 0.5<pT<5.0 GeV
v_3{4}, standard, 1.0<pT<5.0 GeV
v_3{4}, standard, 1.5<pT<5.0 GeV
v_3{4}, standard, 2.0<pT<5.0 GeV
v_3{4, Et}, standard, 0.5<pT<5.0 GeV
v_3{4, Et}, standard, 1.0<pT<5.0 GeV
v_3{4, Et}, standard, 1.5<pT<5.0 GeV
v_3{4, Et}, standard, 2.0<pT<5.0 GeV
v_3{4, Nch}, standard, 0.5<pT<5.0 GeV
v_3{4, Nch}, standard, 1.0<pT<5.0 GeV
v_3{4, Nch}, standard, 1.5<pT<5.0 GeV
v_3{4, Nch}, standard, 2.0<pT<5.0 GeV
v_4{4}, standard, 0.5<pT<5.0 GeV
v_4{4}, standard, 1.0<pT<5.0 GeV
v_4{4}, standard, 1.5<pT<5.0 GeV
v_4{4}, standard, 2.0<pT<5.0 GeV
v_4{4, Et}, standard, 0.5<pT<5.0 GeV
v_4{4, Et}, standard, 1.0<pT<5.0 GeV
v_4{4, Et}, standard, 1.5<pT<5.0 GeV
v_4{4, Et}, standard, 2.0<pT<5.0 GeV
v_4{4, Nch}, standard, 0.5<pT<5.0 GeV
v_4{4, Nch}, standard, 1.0<pT<5.0 GeV
v_4{4, Nch}, standard, 1.5<pT<5.0 GeV
v_4{4, Nch}, standard, 2.0<pT<5.0 GeV
v_2{6}, standard, 0.5<pT<5.0 GeV
v_2{6}, standard, 1.0<pT<5.0 GeV
v_2{6}, standard, 1.5<pT<5.0 GeV
v_2{6}, standard, 2.0<pT<5.0 GeV
v_2{6, Et}, standard, 0.5<pT<5.0 GeV
v_2{6, Et}, standard, 1.0<pT<5.0 GeV
v_2{6, Et}, standard, 1.5<pT<5.0 GeV
v_2{6, Et}, standard, 2.0<pT<5.0 GeV
v_2{6, Nch}, standard, 0.5<pT<5.0 GeV
v_2{6, Nch}, standard, 1.0<pT<5.0 GeV
v_2{6, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Nch}, standard, 2.0<pT<5.0 GeV
sc_2_3{4}, standard, 0.5<pT<5.0 GeV
sc_2_3{4}, standard, 1.0<pT<5.0 GeV
sc_2_3{4}, standard, 1.5<pT<5.0 GeV
sc_2_3{4}, standard, 2.0<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 0.5<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 1.0<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 1.5<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 2.0<pT<5.0 GeV
sc_2_4{4}, standard, 0.5<pT<5.0 GeV
sc_2_4{4}, standard, 1.0<pT<5.0 GeV
sc_2_4{4}, standard, 1.5<pT<5.0 GeV
sc_2_4{4}, standard, 2.0<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 0.5<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 1.0<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 1.5<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 2.0<pT<5.0 GeV
ac_2{3}, standard, 0.5<pT<5.0 GeV
ac_2{3}, standard, 1.0<pT<5.0 GeV
ac_2{3}, standard, 1.5<pT<5.0 GeV
ac_2{3}, standard, 2.0<pT<5.0 GeV
ac_2{3}, 3-subevent, 0.5<pT<5.0 GeV
ac_2{3}, 3-subevent, 1.0<pT<5.0 GeV
ac_2{3}, 3-subevent, 1.5<pT<5.0 GeV
ac_2{3}, 3-subevent, 2.0<pT<5.0 GeV
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1<eta<4.9 in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in Pb+Pb collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of p+Pb collisions. Despite the small transverse spatial extent of the p+Pb collision system, the large magnitude of v_2 and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in p+Pb reactions.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 25-40 GeV.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 40-55 GeV.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 55-80 GeV.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of >80 GeV.
The second flow harmonic measured with the four-particle cumulants as a function of transverse momentum in the event activity bin of 25-40 GeV.
The second flow harmonic measured with the four-particle cumulants as a function of transverse momentum in the event activity bin of 40-55 GeV.
The second flow harmonic measured with the four-particle cumulants as a function of transverse momentum in the event activity bin of 55-80 GeV.
The second flow harmonic measured with the four-particle cumulants as a function of transverse momentum in the event activity bin of >80 GeV.
The second-order harmonic, v2, integrated over pT and eta, calculated with two-particle cumulants as a function of Sum ET^Pb.
The second-order harmonic, v2, integrated over pT and eta, calculated with four-particle cumulants as a function of Sum ET^Pb.
Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range "ridge-like" correlations are observed for pairs with small relative azimuthal angle ($|\Delta\phi|<\pi/3$) and back-to-back pairs ($|\Delta\phi| > 2\pi/3$) over the transverse momentum range $0.4 < p_{\rm T} < 12$ GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fourier decomposed to obtain the harmonics $v_n$ as a function of $p_{\rm T}$ and event activity. The extracted $v_n$ values for $n=2$ to 5 decrease with $n$. The $v_2$ and $v_3$ values are found to be positive in the measured $p_{\rm T}$ range. The $v_1$ is also measured as a function of $p_{\rm T}$ and is observed to change sign around $p_{\rm T}\approx 1.5$-2.0 GeV and then increase to about 0.1 for $p_{\rm T}>4$ GeV. The $v_2(p_{\rm T})$, $v_3(p_{\rm T})$ and $v_4(p_{\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\rm T}$ of particles produced in the two collision systems.
The distributions of $N_{ch}^{rec}$ for MB and MB+HMT after applying an event-by-event weight, errors are statistical.
The distributions of $E_{T}^{Pb}$ [GeV] for MB and MB+HMT after applying an event-by-event weight, errors are statistical.
Per-trigger yield in 2D, $Y$($\Delta\phi$,$\Delta\eta$), for events with $E_{T}^{Pb} <$ 10 GeV and $N_{ch}^{rec} \geq$ 200 and recoil-subtracted per-trigger yield, $Y^{sub}$($\Delta\phi$,$\Delta\eta$) for events with $N_{ch}^{rec} \geq$ 200. Errors are statistical.
$v_{2,2}^{unsub}$ and $v_{2,2}$ as a function of $\Delta\eta$ calculated from the 2-D per-trigger yields in figure 4(a) and 4(b), respectively.
$v_{3,3}^{unsub}$ and $v_{3,3}$ as a function of $\Delta\eta$ calculated from the 2-D per-trigger yields in figure 4(a) and 4(b), respectively.
$v_{4,4}^{unsub}$ and $v_{4,4}$ as a function of $\Delta\eta$ calculated from the 2-D per-trigger yields in figure 4(a) and 4(b), respectively.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
The integrated per-trigger yield, Y_{int}, on the near-side, the away-side and their difference and Y_{int} from the recoil as a function of event activity. Errors are statistical.
The integrated per-trigger yield, Y_{int}, on the near-side, the away-side and their difference and Y_{int} from the recoil as a function of event activity. Errors are statistical.
The Fourier coefficients $v_{n}$ as a function of $p_{T}^{a}$ extracted from the correlation functions, before and after the subtraction of the recoil component.
The Fourier coefficients $v_{n}$ as a function of $p_{T}^{a}$ extracted from the correlation functions, before and after the subtraction of the recoil component.
The Fourier coefficients $v_{n}$ as a function of $p_{T}^{a}$ extracted from the correlation functions, before and after the subtraction of the recoil component.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The centrality dependence of $v_{2}$ as a function of $N_{ch}^{rec}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{3}$ as a function of $N_{ch}^{rec}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{4}$ as a function of $N_{ch}^{rec}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{2}$ as a function of $E_{T}^{Pb}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{3}$ as a function of $E_{T}^{Pb}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{4}$ as a function of $E_{T}^{Pb}$. Values from before and after the recoil subtraction are included.
The $v_{2}$ as a function of $E_{T}^{Pb}$ obtained indirectly by mapping from the $N_{ch}^{rec}-dependence of $v_{2}$ using the correlation data shown in Fig. 2(b).
The $v_{3}$ as a function of $E_{T}^{Pb}$ obtained indirectly by mapping from the $N_{ch}^{rec}-dependence of $v_{3}$ using the correlation data shown in Fig. 2(b).
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic $v_1$ obtained using factorization from $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic $v_1$ obtained using factorization from $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic $v_1$ obtained using factorization from $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
$v_{2}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method.
$v_{2}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method, after the scaling.
$v_{3}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method.
$v_{3}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method, after the scaling.
$v_{4}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method.
$v_{4}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method, after the scaling.
Correlation between $E_{T}^{FCal}$ and $N_{ch}^{rec}$ for MB events (without weighting) and MB+HMT events (with weighting), errors are statistical.
A measurement of $\textit{W}$ boson production in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 $\mathrm{nb}^{-1}$ and 0.15 $\mathrm{nb}^{-1}$ in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons $< N_{\mathrm{part}} >$ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of $\textit{W}$ boson production in multi-nucleon systems.
Ratio of W+ and W- candidates in $W\rightarrow \ell \nu_{\ell}$ as a function of the mean number of participants $N_{part}$.
$W^\pm$ boson production yield per binary collision as a function of the mean number of participants $N_{part}$.
Differential production yield per binary collision for $W^{+}$ bosons as a function of $|\eta_\ell|$.
Differential production yield per binary collision for $W^{-}$ bosons as a function of $|\eta_\ell|$.
The lepton charge asymmetry $A_{\ell}$ from $W^\pm$ bosons as a function of absolute pseudorapidity.
Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.
The symmetric cumulant $sc_{2,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The asymmetric cumulant $ac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The asymmetric cumulant $ac_{2}\{3\}$results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The asymmetric cumulant $ac_{2}\{3\}$results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The asymmetric cumulant $ac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The asymmetric cumulant $ac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The asymmetric cumulant $ac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The $v_{2}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{3}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{4}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{2}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The $v_{3}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The $v_{4}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The $v_{2}\{2\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The $v_{3}\{2\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The $v_{4}\{2\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The $v_{2}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{3}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{4}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{2}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The $v_{3}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The $v_{4}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The $v_{2}\{2\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The $v_{3}\{2\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The $v_{4}\{2\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The symmetric cumulant $ac_{2}\{3\}$ in Pb+Pb from different methods
The symmetric cumulant $ac_{2}\{3\}$ in Pb+Pb from different methods
The symmetric cumulant $ac_{2}\{3\}$ in p+Pb from different methods
The symmetric cumulant $ac_{2}\{3\}$ in p+Pb from different methods
The symmetric cumulant $ac_{2}\{3\}$ in pp from different methods
The symmetric cumulant $ac_{2}\{3\}$ in pp from different methods
Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.
The $R_{\mathrm{coll}}$ and $T_{p\mathrm{A}}$ values and their uncertainties in each centrality bin.
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RpPb for 0-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb for 0-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb for 0-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb for 0-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb for 0-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb for 0-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb for 0-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb for 0-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RCP for 0-10%/60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RCP for 20-30%/60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb for 0-10% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb for 20-30% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb for 60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb for 0-10% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb for 20-30% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb for 60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb for 0-10% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb for 20-30% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb for 60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb for 0-10% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb for 20-30% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb for 60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb for 0-10% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb for 20-30% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb for 60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb for 0-10% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb for 20-30% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb for 60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb for 0-10% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb for 20-30% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb for 60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb for 0-10% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb for 20-30% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb for 60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 0-10%/60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 10-20%/60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 20-30%/60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 30-40%/60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +2.8 to +3.6 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RCP vs. pT*cosh(y*) for 40-60%/60-90% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 0-10% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 0-10% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 0-10% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 0-10% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 0-10% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 0-10% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 0-10% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 0-10% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 10-20% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 10-20% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 10-20% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 10-20% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 10-20% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 10-20% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 10-20% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 10-20% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 20-30% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 20-30% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 20-30% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 20-30% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 20-30% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 20-30% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 20-30% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 20-30% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 30-40% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 30-40% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 30-40% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 30-40% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 30-40% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 30-40% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 30-40% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 30-40% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 40-60% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 40-60% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 40-60% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 40-60% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 40-60% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 40-60% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 40-60% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 40-60% p+Pb events, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 60-90% p+Pb events, within the centre of mass rapidity +2.1 to +2.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 60-90% p+Pb events, within the centre of mass rapidity +1.2 to +2.1 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 60-90% p+Pb events, within the centre of mass rapidity +0.8 to +1.2 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 60-90% p+Pb events, within the centre of mass rapidity +0.3 to +0.8 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 60-90% p+Pb events, within the centre of mass rapidity -0.3 to +0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 60-90% p+Pb events, within the centre of mass rapidity -0.8 to -0.3 (positive denotes downstream proton direction).
Jet RpPb vs. pT*cosh(y*) for 60-90% p+Pb events, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.