Version 2
Probing the quantum interference between singly and doubly resonant top-quark production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 152002, 2018.
Inspire Record 1677498 DOI 10.17182/hepdata.83544

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a $W$ boson and a $b$-quark are significant. Events with exactly two leptons ($ee$, $\mu\mu$, or $e\mu$) and two $b$-tagged jets that satisfy a multi-particle invariant mass requirement are selected from $36.1$ fb$^{-1}$ of proton-proton collision data taken at $\sqrt{s}=13$ TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within $2\sigma$ of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

15 data tables match query

The minimax-mbl distribution in the three-b-tag region, constructed from the two b-jets with largest transverse momentum. The predicted tt+HF contribution from simulation is scaled to match observed data in this region. The hashed band indicates the uncertainty on the total number of predicted events, where the DR scheme is used to estimate the minor contribution from the tW process. Uncertainties include all statistical and systematic sources.

The detector-level minimax-mbl distribution, with signal selection and background estimation as described in the text. The total predicted events are shown for both the DR and DS definitions of the tW process, with uncertainties on the respective estimates indicated by separate error bars. Uncertainties include all statistical and systematic sources.

The unfolded, normalized differential minimax-mbl cross-section compared with theoretical models of the tt+tWb signal with various implementations of interference effects. The uncertainty of each data point includes all statistical and systematic sources, while uncertainties for each of the MC predictions correspond to variations of the PDF set and renormalization and factorization scales.

More…

Properties of $g\rightarrow b\bar{b}$ at small opening angles in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052004, 2019.
Inspire Record 1711114 DOI 10.17182/hepdata.85697

The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to $b$-quark pairs is a unique probe into the properties of gluon fragmentation because identified $b$-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the $g\rightarrow b\bar{b}$ process are measured using 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-$k_t$ jet algorithm with radius parameter $R = 0.2$, are used to probe angular scales below the $R=0.4$ jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into $b$-quarks.

4 data tables match query

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta R(b,b)$, as a function of $\Delta R(b,b)$ - the angle in $\eta$ and $\phi$ between the two b-tagged jets.

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta\theta_\text{gpp,gbb}/\pi$, the angle between production (gpp) and decay (gbb) planes ($\Delta\theta_\text{gpp,gbb}$).

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/dz(p_\text{T})$, as a function of $z(p_\text{T})=p_\text{T,2}/(p_\text{T,1}+p_\text{T,2})$.

More…

Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 048, 2019.
Inspire Record 1720442 DOI 10.17182/hepdata.84818

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single $Z$ boson production, Higgs boson production, and $Z$ boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of $gg\rightarrow ZZ \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

29 data tables match query

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$ in bin of 0$< p_{T}^{4l} <$20 GeV

Measured and expected differential cross-section $\text{d}\sigma / \text{d} m_{4l}$ as a function of $m_{4l}$ in bin of 20$< p_{T}^{4l} <$50 GeV

More…

Search for low-mass resonances decaying into two jets and produced in association with a photon using $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 795 (2019) 56-75, 2019.
Inspire Record 1717700 DOI 10.17182/hepdata.85763

A search is performed for localised excesses in dijet mass distributions of low-dijet-mass events produced in association with a high transverse energy photon. The search uses up to 79.8 fb$^{-1}$ of LHC proton-proton collisions collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV during 2015-2017. Two variants are presented: one which makes no jet flavour requirements and one which requires both jets to be tagged as $b$-jets. The observed mass distributions are consistent with multi-jet processes in the Standard Model. The data are used to set upper limits on the production cross-section for a benchmark $Z^\prime$ model and, separately, on generic Gaussian-shape contributions to the mass distributions, extending the current ATLAS constraints on dijet resonances to the mass range between 225 and 1100 GeV.

16 data tables match query

Dijet mass distribution for the flavour inclusive category. Data, estimated background and uncertainties are shown. Events are collected using the single-photon trigger and contain a $E_T^{\gamma} > 150$ GeV photon and two $p_T^{jet} > 25$ GeV jets.

Dijet mass distribution for the flavour inclusive category. Data, estimated background and uncertainties are shown. Events are collected using the combined trigger and contain a $E_T^{\gamma} > 95$ GeV photon and two $p_T^{jet} > 65$ GeV jets.

Dijet mass distribution for the b-tagged category. Data, estimated background and uncertainties are shown. Events are collected using the single-photon trigger and contain a $E_T^{\gamma} > 150$ GeV photon and two $p_T^{jet} > 25$ GeV jets.

More…

Measurement of the inclusive and fiducial $t\bar{t}$ production cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 487, 2018.
Inspire Record 1644099 DOI 10.17182/hepdata.81945

The inclusive and fiducial $t\bar{t}$ production cross-sections are measured in the lepton+jets channel using 20.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and $b$-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive $t\bar{t}$ cross-section is measured with a precision of 5.7% to be $\sigma_{\text{inc}}(t\bar{t})$ = 248.3 $\pm$ 0.7 (stat.) $\pm$ 13.4 (syst.) $\pm$ 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is $\sigma_{\text{fid}}(t\bar{t})$ = 48.8 $\pm$ 0.1 (stat.) $\pm$ 2.0 (syst.) $\pm$ 0.9 (lumi.) pb with a precision of 4.5%.

2 data tables match query

The measured inclusive cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity

The measured fiducial cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity


Measurement of the $t\bar{t}\gamma$ production cross section in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 086, 2017.
Inspire Record 1604029 DOI 10.17182/hepdata.81946

The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with $20.2$ fb$^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum $p_\mathrm{T} > 15$ GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a $b$-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be $139 \pm 7 (\mathrm{stat.}) \pm 17 (\mathrm{syst.})$ fb, in good agreement with the theoretical prediction at next-to-leading order of $151 \pm 24$ fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.

3 data tables match query

The measured fiducial cross sections. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pT. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pseudorapidity. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty


Measurement of forward-backward multiplicity correlations in lead-lead, proton-lead, and proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 95 (2017) 064914, 2017.
Inspire Record 1472317 DOI 10.17182/hepdata.87144

Two-particle pseudorapidity correlations are measured in $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV Pb+Pb, $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV $p$+Pb, and $\sqrt{s}$ = 13 TeV $pp$ collisions at the LHC, with total integrated luminosities of approximately 7 $\mu\mathrm{b}^{-1}$, 28 $\mathrm{nb}^{-1}$, and 65 $\mathrm{nb}^{-1}$, respectively. The correlation function $C_{\rm N}(\eta_1,\eta_2)$ is measured as a function of event multiplicity using charged particles in the pseudorapidity range $|\eta|<2.4$. The correlation function contains a significant short-range component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by $1+\langle{a_1^2}\rangle \eta_1\eta_2$ in all collision systems over the full multiplicity range. The values of $\sqrt{\langle{a_1^2}\rangle}$ are consistent between the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of $\sqrt{\langle{a_1^2}\rangle}$ and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. The $\eta$ distribution of the short-range component, after symmetrizing the proton and lead directions in $p$+Pb collisions, is found to be smaller than that in $pp$ collisions with comparable multiplicity.

706 data tables match query

C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)

C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)

C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)

More…

Measurements of fiducial and differential cross-sections of $t\bar{t}$ production with additional heavy-flavour jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 046, 2019.
Inspire Record 1705857 DOI 10.17182/hepdata.87098

This paper presents measurements of $t\bar{t}$ production in association with additional $b$-jets in $pp$ collisions at the LHC at a centre-of-mass energy of 13 TeV. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. Fiducial cross-section measurements are performed in the dilepton and lepton-plus-jets $t\bar{t}$ decay channels. Results are presented at particle level in the form of inclusive cross-sections of $t\bar{t}$ final states with three and four $b$-jets as well as differential cross-sections as a function of global event properties and properties of $b$-jet pairs. The measured inclusive fiducial cross-sections generally exceed the $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower but are compatible within the total uncertainties. The experimental uncertainties are smaller than the uncertainties in the predictions. Comparisons of state-of-the-art theoretical predictions with the differential measurements are shown and good agreement with data is found for most of them.

50 data tables match query

The measured fiducial cross sections

The measured fiducial cross sections

Relative differential cross section as a function of the b-jet multiplicity in emu channel

More…

Measurement of photon-jet transverse momentum correlations in 5.02 TeV Pb+Pb and $pp$ collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 789 (2019) 167-190, 2019.
Inspire Record 1694678 DOI 10.17182/hepdata.85369

Jets created in association with a photon can be used as a calibrated probe to study energy loss in the medium created in nuclear collisions. Measurements of the transverse momentum balance between isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb$^{-1}$ of Pb+Pb collision data at $\sqrt{s_\mathrm{NN}}=5.02$ TeV and 25 pb$^{-1}$ of $pp$ collision data at $\sqrt{s}=5.02$ TeV recorded with the ATLAS detector at the LHC. Photons with transverse momentum $63.1 < p_\mathrm{T}^{\gamma} < 200$ GeV and $\left|\eta^{\gamma}\right| < 2.37$ are paired inclusively with all jets in the event that have $p_\mathrm{T}^\mathrm{jet} > 31.6$ GeV and pseudorapidity $\left|\eta^\mathrm{jet}\right| < 2.8$. The transverse momentum balance given by the jet-to-photon $p_\mathrm{T}$ ratio, $x_\mathrm{J\gamma}$, is measured for pairs with azimuthal opening angle $\Delta\phi > 7\pi/8$. Distributions of the per-photon jet yield as a function of $x_\mathrm{J\gamma}$, $(1/N_\gamma)(\mathrm{d}N/\mathrm{d}x_\mathrm{J\gamma})$, are corrected for detector effects via a two-dimensional unfolding procedure and reported at the particle level. In $pp$ collisions, the distributions are well described by Monte Carlo event generators. In Pb+Pb collisions, the $x_\mathrm{J\gamma}$ distribution is modified from that observed in $pp$ collisions with increasing centrality, consistent with the picture of parton energy loss in the hot nuclear medium. The data are compared with a suite of energy-loss models and calculations.

6 data tables match query

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 63.1-79.6 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 79.6-100 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 100-158 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

More…

Search for pair- and single-production of vector-like quarks in final states with at least one $Z$ boson decaying into a pair of electrons or muons in $pp$ collision data collected with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 112010, 2018.
Inspire Record 1679959 DOI 10.17182/hepdata.83660

A search for vectorlike quarks is presented, which targets their decay into a $Z$ boson and a third-generation Standard Model quark. In the case of a vectorlike quark $T$ ($B$) with charge $+2/3e$ ($-1/3e$), the decay searched for is $T \rightarrow Zt$ ($B \rightarrow Zb$). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The final state used is characterized by the presence of $b$-tagged jets, as well as a $Z$ boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair and single production of vectorlike quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as - in the case of the single-production selections - the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vectorlike quarks of $m_T > 1030$ GeV ($m_T > 1210$ GeV) and $m_B > 1010$ GeV ($m_B > 1140$ GeV) in the singlet (doublet) model. In the case of 100% branching ratio for $T\rightarrow Zt$ ($B\rightarrow Zb$), the limits are $m_T > 1340$ GeV ($m_B > 1220$ GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vectorlike quark masses.

84 data tables match query

Comparison of the distribution of the scalar sum of small-$R$ jet transverse momenta, $H_T$, between data and the background prediction in the 0-large-$R$ jet-signal region of the pair-production (PP) $2\ell$ $0-1$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $H_T$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.

Comparison of the distribution of the scalar sum of small-$R$ jet transverse momenta, $H_T$, between data and the background prediction in the 1-large-$R$ jet-signal region of the pair-production (PP) $2\ell$ $0-1$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $H_T$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.

Comparison of the distribution of the invariant mass of the $Z$ boson candidate and the highest-$p_T$ $b$-tagged jet, $m(Zb)$, between data and the background prediction in the signal region of the pair-production (PP) $2\ell$ $\geq 2$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $m(Zb)$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.

More…