Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
Phys.Lett.B 819 (2021) 136412, 2021.
Inspire Record 1852325 DOI 10.17182/hepdata.102955

A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass $m_{\ell\ell} < 30$ GeV is presented. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the $H \rightarrow \ell \ell \gamma$ process is found with a significance of 3.2$\sigma$ over the background-only hypothesis, compared to an expected significance of 2.1$\sigma$. The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is $\mu = 1.5 \pm 0.5$. The Higgs boson production cross-section times the $H \rightarrow\ell\ell\gamma$ branching ratio for $m_{\ell\ell} <$ 30 GeV is determined to be 8.7 $^{+2.8}_{-2.7}$ fb.

3 data tables match query

Number of data events selected in each analysis category in the $m_{\ell\ell\gamma}$ mass range of 110--160 GeV. In addition, the following numbers are given: number of $H\rightarrow\gamma^{*}\gamma\rightarrow \ell\ell\gamma$ events in the smallest $m_{\ell\ell\gamma}$ window containing 90\% of the expected signal ($S_{90}$), the non-resonant background in the same interval ($B_{90}^N$) as estimated from fits to the data sidebands using the background models, the resonant background in the same interval ($B_{H\rightarrow\gamma\gamma}$), the expected signal purity $f_{90} = S_{90}/(S_{90}+B_{90})$, and the expected significance estimate defined as $Z_{90} = \sqrt{ 2( (S_{90}+B_{90})\,\ln(1+S_{90}/B_{90}) - S_{90}) }$ where $B_{90} = B_{90}^N+B_{H\rightarrow\gamma\gamma}$. $B_{H\rightarrow\gamma\gamma}$ is only relevant for the electron categories and is marked as 0 otherwise

The best fit value for the signal yield normalised to the Standard Model prediction (signal strength) for $pp \to H \to Z+\gamma$

Measured $\sigma( p p \rightarrow H) \cdot B(H\rightarrow \ell\ell\gamma)$ for $m_{\ell\ell} < 30$ GeV


Measurement of the $t\bar{t}t\bar{t}$ production cross section in $pp$ collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 118, 2021.
Inspire Record 1869695 DOI 10.17182/hepdata.105039

A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$^{-1}$ is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain $b$-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26$^{+17}_{-15}$ fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0$\pm$2.4 fb.

76 data tables match query

The results of the fitted signal strength $\mu$ in the 1L/2LOS channel

The results of fitted inclusive ${t\bar{t}t\bar{t}}$ cross-section in the 1L/2LOS channel

Ranking of the nuisance parameters included in the fit according to their impact on the signal strength $\mu$. The impact of each nuisance parameter, $\Delta\mu$, is computed by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the nuisance parameter to its best-fit value, $\hat{\theta}$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta\theta$ ($\pm \Delta\hat{\theta}$).

More…

Version 2
Reconstruction and identification of boosted di-$\tau$ systems in a search for Higgs boson pairs using 13 TeV proton$-$proton collision data in ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2020) 163, 2020.
Inspire Record 1809175 DOI 10.17182/hepdata.95432

In this paper, a new technique for reconstructing and identifying hadronically decaying $\tau^+\tau^-$ pairs with a large Lorentz boost, referred to as the di-$\tau$ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-$\tau$ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $b\bar{b}$ pair and the other into a boosted $\tau^+\tau^-$ pair, with two hadronically decaying $\tau$-leptons in the final state. Using 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-$\tau$ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-$\tau$ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon$-$gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1$-$3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.

8 data tables match query

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Distribution of $m^{vis}_{HH}$ after applying all the event selection that define the $HH$ SR, except the requirement on $m^{vis}_{HH}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. The $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ signal is overlaid for two resonance mass hypotheses with a cross-section set to the expected limit, while all backgrounds are pre-fit. The first and the last bins contains the under-flow and over-flow bin entries, respectively. The hatched bands represent combined statistical and systematic uncertainties.

More…

Version 2
Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 737, 2021.
Inspire Record 1853014 DOI 10.17182/hepdata.100351

Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.

152 data tables match query

The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.

The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.

List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.

More…

Measurement of the properties of Higgs boson production at $\sqrt{s} = 13$ TeV in the $H\to\gamma\gamma$ channel using $139$ fb$^{-1}$ of $pp$ collision data with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 088, 2023.
Inspire Record 2104770 DOI 10.17182/hepdata.129799

Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be $1.04^{+0.10}_{-0.09}$. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a $W$ or $Z$ boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a $p$-value of $93\%$. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.

13 data tables match query

Cross-sections times H->yy branching ratio for ggF +bbH, VBF, VH, ttH, and tH production, normalized to their SM predictions. The values are obtained from a simultaneous fit to all categories. The theory uncertainties in the predictions include uncertainties due to missing higher-order terms in the perturbative QCD calculations and choices of parton distribution functions and value of alpha_s, as well as the H->yy branching ratio uncertainty.

Correlation matrix for the measurement of production cross-sections of the Higgs boson times the H->yy branching ratio.

Best-fit values and uncertainties for STXS parameters in each of the 28 regions considered, normalized to their SM predictions. The values for the gg->H process also include the contributions from bbH production.

More…

Version 3
Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 616, 2020.
Inspire Record 1768911 DOI 10.17182/hepdata.92377

This paper describes precision measurements of the transverse momentum $p_\mathrm{T}^{\ell\ell}$ ($\ell=e,\mu$) and of the angular variable $\phi^{*}_{\eta}$ distributions of Drell-Yan lepton pairs in a mass range of 66-116 GeV. The analysis uses data from 36.1 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the LHC in 2015 and 2016. Measurements in electron-pair and muon-pair final states are performed in the same fiducial volumes, corrected for detector effects, and combined. Compared to previous measurements in proton-proton collisions at $\sqrt{s}=$7 and 8 TeV, these new measurements probe perturbative QCD at a higher centre-of-mass energy with a different composition of initial states. They reach a precision of 0.2% for the normalized spectra at low values of $p_\mathrm{T}^{\ell\ell}$. The data are compared with different QCD predictions, where it is found that predictions based on resummation approaches can describe the full spectrum within uncertainties.

80 data tables match query

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

More…

Version 6
Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collision data with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 112001, 2018.
Inspire Record 1641270 DOI 10.17182/hepdata.77891

A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.

426 data tables match query

Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.

Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.

Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.

More…

Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052005, 2019.
Inspire Record 1704138 DOI 10.17182/hepdata.85748

A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

122 data tables match query

- - - - - - - - - - - - - - - - - - - - <br/><b>Muon RoI Cluster trigger efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table1">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table2">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table3">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table4">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table5">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table6">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table7">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table8">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table9">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table10">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table11">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table12">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table13">Endcaps </a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table14">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table15">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table16">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table17">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table18">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table19">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table20">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table21">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table22">Endcaps</a> <br/><b>MS vertex efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table23">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table24">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table25">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table26">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table27">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table28">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table29">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table30">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table31">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table32">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table33">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table34">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table35">Endcaps</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table36">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table37">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table38">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table39">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table40">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table41">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table42">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table43">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table44">Endcaps</a> <br/><b>Exclusion limits:</b> <br/><i>mPhi=125, mS=5:</i> <a href="85748?version=1&table=Table45">2Vx</a> <a href="85748?version=1&table=Table46">1Vx</a> <a href="85748?version=1&table=Table47">Combined</a> <br/><i>mPhi=125, mS=8:</i> <a href="85748?version=1&table=Table48">2Vx</a> <a href="85748?version=1&table=Table49">1Vx</a> <a href="85748?version=1&table=Table50">Combined</a> <br/><i>mPhi=125, mS=15:</i> <a href="85748?version=1&table=Table51">2Vx</a> <a href="85748?version=1&table=Table52">1Vx</a> <a href="85748?version=1&table=Table53">Combined</a> <br/><i>mPhi=125, mS=25:</i> <a href="85748?version=1&table=Table54">2Vx</a> <a href="85748?version=1&table=Table55">1Vx</a> <a href="85748?version=1&table=Table56">Combined</a> <br/><i>mPhi=125, mS=40:</i> <a href="85748?version=1&table=Table57">2Vx</a> <a href="85748?version=1&table=Table58">1Vx</a> <a href="85748?version=1&table=Table59">Combined</a> <br/><i>Stealth SUSY mG=250:</i> <a href="85748?version=1&table=Table60">2Vx</a> <br/><i>Stealth SUSY mG=500:</i> <a href="85748?version=1&table=Table61">2Vx</a> <a href="85748?version=1&table=Table62">1Vx</a> <a href="85748?version=1&table=Table63">Combined</a> <br/><i>Stealth SUSY mG=800:</i> <a href="85748?version=1&table=Table64">2Vx</a> <a href="85748?version=1&table=Table65">1Vx</a> <a href="85748?version=1&table=Table66">Combined</a> <br/><i>Stealth SUSY mG=1200:</i> <a href="85748?version=1&table=Table67">2Vx</a> <a href="85748?version=1&table=Table68">1Vx</a> <a href="85748?version=1&table=Table69">Combined</a> <br/><i>Stealth SUSY mG=1500:</i> <a href="85748?version=1&table=Table70">2Vx</a> <a href="85748?version=1&table=Table71">1Vx</a> <a href="85748?version=1&table=Table72">Combined</a> <br/><i>Stealth SUSY mG=2000:</i> <a href="85748?version=1&table=Table73">2Vx</a> <a href="85748?version=1&table=Table74">1Vx</a> <a href="85748?version=1&table=Table75">Combined</a> <br/><i>mPhi=100, mS=8:</i> <a href="85748?version=1&table=Table76">2Vx</a> <br/><i>mPhi=100, mS=25:</i> <a href="85748?version=1&table=Table77">2Vx</a> <br/><i>mPhi=200, mS=8:</i> <a href="85748?version=1&table=Table78">2Vx</a> <br/><i>mPhi=200, mS=25:</i> <a href="85748?version=1&table=Table79">2Vx</a> <br/><i>mPhi=200, mS=50:</i> <a href="85748?version=1&table=Table80">2Vx</a> <br/><i>mPhi=400, mS=50:</i> <a href="85748?version=1&table=Table81">2Vx</a> <br/><i>mPhi=400, mS=100:</i> <a href="85748?version=1&table=Table82">2Vx</a> <br/><i>mPhi=600, mS=50:</i> <a href="85748?version=1&table=Table83">2Vx</a> <br/><i>mPhi=600, mS=150:</i> <a href="85748?version=1&table=Table84">2Vx</a> <br/><i>mPhi=1000, mS=50:</i> <a href="85748?version=1&table=Table85">2Vx</a> <br/><i>mPhi=1000, mS=150:</i> <a href="85748?version=1&table=Table86">2Vx</a> <br/><i>mPhi=1000, mS=400:</i> <a href="85748?version=1&table=Table87">2Vx</a> <br/><i>Baryogenesis nubb, mChi=10</i> <a href="85748?version=1&table=Table88">2Vx</a> <a href="85748?version=1&table=Table89">1Vx</a> <a href="85748?version=1&table=Table90">Combined</a> <br/><i>Baryogenesis nubb, mChi=30</i> <a href="85748?version=1&table=Table91">2Vx</a> <a href="85748?version=1&table=Table92">1Vx</a> <a href="85748?version=1&table=Table93">Combined</a> <br/><i>Baryogenesis nubb, mChi=50</i> <a href="85748?version=1&table=Table94">2Vx</a> <a href="85748?version=1&table=Table95">1Vx</a> <a href="85748?version=1&table=Table96">Combined</a> <br/><i>Baryogenesis nubb, mChi=100</i> <a href="85748?version=1&table=Table97">2Vx</a> <br/><i>Baryogenesis cbs, mChi=10</i> <a href="85748?version=1&table=Table98">2Vx</a> <a href="85748?version=1&table=Table99">1Vx</a> <a href="85748?version=1&table=Table100">Combined</a> <br/><i>Baryogenesis cbs, mChi=30</i> <a href="85748?version=1&table=Table101">2Vx</a> <a href="85748?version=1&table=Table102">1Vx</a> <a href="85748?version=1&table=Table103">Combined</a> <br/><i>Baryogenesis cbs, mChi=50</i> <a href="85748?version=1&table=Table104">2Vx</a> <a href="85748?version=1&table=Table105">1Vx</a> <a href="85748?version=1&table=Table106">Combined</a> <br/><i>Baryogenesis cbs, mChi=100</i> <a href="85748?version=1&table=Table107">2Vx</a> <br/><i>Baryogenesis lcb, mChi=10</i> <a href="85748?version=1&table=Table108">2Vx</a> <a href="85748?version=1&table=Table109">1Vx</a> <a href="85748?version=1&table=Table110">Combined</a> <br/><i>Baryogenesis lcb, mChi=30</i> <a href="85748?version=1&table=Table111">2Vx</a> <a href="85748?version=1&table=Table112">1Vx</a> <a href="85748?version=1&table=Table113">Combined</a> <br/><i>Baryogenesis lcb, mChi=50</i> <a href="85748?version=1&table=Table114">2Vx</a> <a href="85748?version=1&table=Table115">1Vx</a> <a href="85748?version=1&table=Table116">Combined</a> <br/><i>Baryogenesis lcb, mChi=100</i> <a href="85748?version=1&table=Table117">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=10</i> <a href="85748?version=1&table=Table118">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=30</i> <a href="85748?version=1&table=Table119">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=50</i> <a href="85748?version=1&table=Table120">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=100</i> <a href="85748?version=1&table=Table121">2Vx</a>

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=100$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=125$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

More…

Measurement of $W^{\pm}$-boson and $Z$-boson production cross-sections in $pp$ collisions at $\sqrt{s}=2.76$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 901, 2019.
Inspire Record 1742785 DOI 10.17182/hepdata.91267

The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.

28 data tables match query

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.

More…

Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS ALFA spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2020) 042, 2020.
Inspire Record 1762584 DOI 10.17182/hepdata.93063

A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

3 data tables match query

Hadron-level differential SD cross section as a function of Delta Eta.

Hadron-level differential SD cross section as a function of t.

Hadron-level differential SD cross section as a function of log_10 xi.