Search for pair production of a new heavy quark that decays into a $W$ boson and a light quark in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 92 (2015) 112007, 2015.
Inspire Record 1393281 DOI 10.17182/hepdata.71069

A search is presented for pair production of a new heavy quark ($Q$) that decays into a $W$ boson and a light quark ($q$) in the final state where one $W$ boson decays leptonically (to an electron or muon plus a neutrino) and the other $W$ boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. No evidence of $Q\bar{Q}$ production is observed. New chiral quarks with masses below 690 GeV are excluded at 95% confidence level, assuming BR$(Q\to Wq)=1$. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR$(Q\to Wq)$ versus BR$(Q\to Hq)$.

2 data tables match query

The expected and observed 95% CL upper limits on the cross section as a function of $m_Q$ when setting BR$(Q\to Wq) = 1$, which would be the case for a new chiral quark. Also shown are the $\pm 1\sigma$ and $\pm 2\sigma$ intervals on the distribution of expected results for the chiral model if no signal exists.

The upper and lower bounds on the range of heavy quark masses expected and observed to be excluded at 95% CL, as a function of the branching ratio of the heavy quark to $Wq$ versus $Hq$, with the branching ratio to $Zq$ fixed by the requirement BR$(Q\!\to\!Zq) = 1 - \text{BR}(Q\!\to\!Wq) - \text{BR}(Q\!\to\!Hq)$.


Search for new phenomena in events with a photon and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 06 (2016) 059, 2016.
Inspire Record 1442359 DOI 10.17182/hepdata.72855

Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton--proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 $\rm fb^{-1}$. The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses of up to 710 GeV for dark matter candidate masses up to 150 GeV. In an effective theory of dark matter production, values of the suppression scale $M_*$ up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding $M_{\rm D}$ up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions; the limits are reduced by 20--40% depending on the number of additional spatial dimensions when applying a truncation procedure.

10 data tables match query

Distribution of missing transverse momentum, reconstructed treating muons as non-interacting particles, in the data and for the background in the 1muCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

Distribution of missing transverse momentum, reconstructed treating muons as non-interacting particles, in the data and for the background in the 2muCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

Distribution of missing transverse momentum, reconstructed treating electrons as non-interacting particles, in the data and for the background in the 2eleCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

More…

Search for new particles in events with one lepton and missing transverse momentum in $pp$ collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 037, 2014.
Inspire Record 1308524 DOI 10.17182/hepdata.65524

This paper presents a search for new particles in events with one lepton (electron or muon) and missing transverse momentum using 20.3 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded by the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. A $W'$ with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 3.24 TeV. Excited chiral bosons ($W^{*}$) with equivalent coupling strengths are excluded for masses up to 3.21 TeV. In the framework of an effective field theory limits are also set on the dark matter-nucleon scattering cross-section as well as the mass scale $M_{*}$ of the unknown mediating interaction for dark matter pair production in association with a leptonically decaying $W$.

19 data tables match query

Spectrum of lepton PT for the electron channel after the event selection. The spectrum is shown with the requirement MT > 252 GeV.

Spectrum of lepton PT for the muon channel after the event selection. The spectrum is shown with the requirement MT > 252 GeV.

Spectrum of ETmiss for the electron channel after the event selection. The spectrum is shown with the requirement MT > 252 GeV.

More…

Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 299, 2015.
Inspire Record 1343107 DOI 10.17182/hepdata.68783

Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb$^{-1}$ of $\sqrt{s}=8$ TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with $p_T > 120$ GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between $E_T^{miss} > 150$ GeV and $E_T^{miss} > 700$ GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.

45 data tables match query

Distributions of the measured transverse mass distribution of the identified muon in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

Measured $E_{T}^{miss}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

Measured leading jet $p_{T}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

More…

Search for the electroweak production of supersymmetric particles in $\sqrt{s}$=8 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 052002, 2016.
Inspire Record 1394670 DOI 10.17182/hepdata.69537

The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vector-boson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross-sections. Results are based on 20 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$=8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models.

89 data tables match query

The missing transverse momentum ETmiss in the multi-jet validation region VR1 for the two-tau MVA analysis.

The effective mass meff in the multi-jet validation region VR2 for the two-tau MVA analysis.

The stransverse mass mT2 in the W+jets validation region VR1 for the two-tau MVA analysis.

More…

Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 92 (2015) 072001, 2015.
Inspire Record 1383883 DOI 10.17182/hepdata.69300

A search is presented for photonic signatures motivated by generalised models of gauge-mediated supersymmetry breaking. This search makes use of $20.3{\rm fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded by the ATLAS detector at the LHC, and explores models dominated by both strong and electroweak production of supersymmetric partner states. Four experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon, lepton, $b$-quark jet, or jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction and model-dependent 95% confidence-level exclusion limits are set.

32 data tables match query

Observed and expected exclusion limits in the gluino-bino mass plane, using the $\rm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}_1^0}\geq 800 {\rm GeV}$ and $\rm{SR}^{\gamma\gamma}_{S-L}$ analyses for $m_{\tilde{\chi}_1^0} < 800 {\rm GeV}$.

Observed and expected exclusion limits in the wino-bino mass plane, using the $\rm{SR}^{\gamma\gamma}_{W-H}$ analysis for $m_{\tilde{\chi}_1^0}\geq 350 {\rm GeV}$ and $\rm{SR}^{\gamma\gamma}_{W-L}$ analyses for $m_{\tilde{\chi}_1^0} < 350 {\rm GeV}$.

Observed exclusion limits in the gluino-neutralino mass plane, for the higgsino-bino GGM model with $\mu < 0$, using the merged $\rm{SR}^{\gamma b}_{L}$ and $\rm{SR}^{\gamma b}_{H}$ analyses.

More…

ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 510, 2015.
Inspire Record 1380183 DOI 10.17182/hepdata.69366

This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb$^{-1}$ of collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV, although in some case an additional 4.7 fb$^{-1}$ of collision data at $\sqrt{s}$ = 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.

94 data tables match query

Summary of the ATLAS Run 1 searches for direct stop pair production in models where no supersymmetric particle other than the $\tilde t_1$ and the $\tilde \chi_1^0$ is involved in the $\tilde t_1$ decay. Lines for $\Delta m(\tilde t_1, \chi_1^0 ) > m_{t}$ - t0L/t1L combined observed limit hepdata.cedar.ac.uk/view/ins1380183/d63 - t0L/t1L combined expected limit hepdata.cedar.ac.uk/view/ins1380183/d64 - t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d19 - t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d20 - SC observed limit $m_t< m_{\tilde t_1} < 198$ GeV - SC expected limit $m_t< m_{\tilde t_1} < 184$ GeV Lines for $m_b + m_W < \Delta m(\tilde t_1, \chi_1^0 ) < m_{t}$ - t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d22 - t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d23 - t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d22 - t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d23 - WW observed limit hepdata.cedar.ac.uk/view/ins1380183/d47 - WW expected limit hepdata.cedar.ac.uk/view/ins1380183/d48 Lines for $0 < \Delta m(\tilde t_1, \chi_1^0 ) < m_b + m_W $ - tc observed limit hepdata.cedar.ac.uk/view/ins1304459 (root macro) - tc expected limit hepdata.cedar.ac.uk/view/ins1304459 (root macro) - t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d22 - t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d23 - WW observed limit hepdata.cedar.ac.uk/view/ins1380183/d47 - WW expected limit hepdata.cedar.ac.uk/view/ins1380183/d48.

Upper limits on the stop pair production cross sections for different values of the branching ratios for the decays $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ and $\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0$, where BR$(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0)$ + BR$(\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0)$ = 1. Signal points with $\Delta m (\tilde{t}_1, \tilde{\chi}_1^0)$ of 10 GeV are shown. The limits quoted are taken from the best performing, based on expected exclusion CLs, signal regions from the tc-M, tc-C, t1L-bCa_low and WW analyses at each mass point. - Theoretical cross section from twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections8TeVstopsbottom.

Upper limits on the stop pair production cross sections for different values of the branching ratios for the decays $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ and $\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0$, where BR$(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0)$ + BR$(\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0)$ = 1. Signal points with $\Delta m (\tilde{t}_1, \tilde{\chi}_1^0)$ of 80 GeV are shown. The limits quoted are taken from the best performing, based on expected exclusion CLs, signal regions from the tc-M, tc-C, t1L-bCa_low and WW analyses at each mass point. - Theoretical cross section from twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections8TeVstopsbottom.

More…

Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 92 (2015) 072004, 2015.
Inspire Record 1362183 DOI 10.17182/hepdata.68777

Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. This article presents the results of a search for events containing at least one long-lived particle that decays at a significant distance from its production point into two leptons or into five or more charged particles. This analysis uses a data sample of proton-proton collisions at $\sqrt{s}$ = 8 TeV corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected in 2012 by the ATLAS detector operating at the Large Hadron Collider. No events are observed in any of the signal regions, and limits are set on model parameters within supersymmetric scenarios involving R-parity violation, split supersymmetry, and gauge mediation. In some of the search channels, the trigger and search strategy are based only on the decay products of individual long-lived particles, irrespective of the rest of the event. In these cases, the provided limits can easily be reinterpreted in different scenarios.

51 data tables match query

Vertex-level efficiency as a function of the vertex radial position for an RPV SUSY model of squark production with $\tilde{q}\to q[\tilde{\chi}_1^0\to\mu qq]$, where $m(\tilde{q}) = 700$ GeV, $m(\tilde{\chi}_1^0) = 494$ GeV and $c\tau(\tilde{\chi}_1^0)$ = 175 mm. This result is also represented in Figure 3b and Auxiliary Figure 1.

Vertex-level efficiency as a function of the vertex radial position for an RPV SUSY model of squark production with $\tilde{q}\to q[\tilde{\chi}_1^0\to\mu qq]$, where $m(\tilde{q}) = 700$ GeV, $m(\tilde{\chi}_1^0) = 108$ GeV and $c\tau(\tilde{\chi}_1^0)$ = 101 mm.

Vertex-level efficiency as a function of the vertex radial position for an RPV SUSY model of squark production with $\tilde{q}\to q[\tilde{\chi}_1^0\to\mu qb]$, where $m(\tilde{q}) = 700$ GeV, $m(\tilde{\chi}_1^0) = 494$ GeV and $c\tau(\tilde{\chi}_1^0)$ = 175 mm. The other SUSY model point in the figure is tabulated in http://hepdata.cedar.ac.uk/view/ins1362183/d1.

More…

Search for dark matter at $\sqrt{s}=13$ TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 393, 2017.
Inspire Record 1591328 DOI 10.17182/hepdata.77382

Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 $\textrm fb^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, exclusion limits in models where dark-matter candidates are pair-produced are determined. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750-1200 GeV for dark-matter candidate masses below 230-480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale $M_{*}$ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to $Z\gamma$ and the Z boson subsequently decays into neutrinos.

24 data tables match query

Observed event yields in 36.1 fb$^{-1}$ of data compared to expected yields from SM backgrounds in all signal regions, as predicted from the simultaneous fit to their respective CRs. The first three lines report the yields obtained from the inclusive-SR fit, while the two last lines report the yields obtained from the multiple-bin fit. The uncertainty includes both the statistical and systematic uncertainties.

The observed 95% CL exclusion contour for a simplified model of dark-matter production involving an axial-vector operator, Dirac DM and couplings $g_{q}$ = 0.25, $g_{\chi}$ = 1 and $g_{l}$ = 0 as a function of the dark-matter mass $m_{\chi}$ and the mediator mass $m_{\mathrm{med}}$. The plane under the limit curve is excluded.

The expected 95% CL exclusion contour (+1$\sigma$) for a simplified model of dark-matter production involving an axial-vector operator, Dirac DM and couplings $g_{q}$ = 0.25, $g_{\chi}$ = 1 and $g_{l}$ = 0 as a function of the dark-matter mass $m_{\chi}$ and the mediator mass $m_{\mathrm{med}}$. The plane under the limit curve is excluded.

More…

Version 2
Search for supersymmetry in events with $b$-tagged jets and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 195, 2017.
Inspire Record 1620694 DOI 10.17182/hepdata.79165

A search for the supersymmetric partners of the Standard Model bottom and top quarks is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Direct production of pairs of bottom and top squarks ($\tilde{b}_{1}$ and $\tilde{t}_{1}$) is searched for in final states with $b$-tagged jets and missing transverse momentum. Distinctive selections are defined with either no charged leptons (electrons or muons) in the final state, or one charged lepton. The zero-lepton selection targets models in which the $\tilde{b}_{1}$ is the lightest squark and decays via $\tilde{b}_{1} \rightarrow b \tilde{\chi}^{0}_{1}$, where $\tilde{\chi}^{0}_{1}$ is the lightest neutralino. The one-lepton final state targets models where bottom or top squarks are produced and can decay into multiple channels, $\tilde{b}_{1} \rightarrow b \tilde{\chi}^{0}_{1}$ and $\tilde{b}_{1} \rightarrow t \tilde{\chi}^{\pm}_{1}$, or $\tilde{t}_{1} \rightarrow t \tilde{\chi}^{0}_{1}$ and $\tilde{t}_{1} \rightarrow b \tilde{\chi}^{\pm}_{1}$, where $\tilde{\chi}^{\pm}_{1}$ is the lightest chargino and the mass difference $m_{\tilde{\chi}^{\pm}_{1}}- m_{\tilde{\chi}^{0}_{1}}$ is set to 1 GeV. No excess above the expected Standard Model background is observed. Exclusion limits at 95\% confidence level on the mass of third-generation squarks are derived in various supersymmetry-inspired simplified models.

202 data tables match query

- - - - - - - - - - - - - - - - - - - - <br/><b>Acceptance:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Acceptance1">b0L-SRA350</a> <a href="79165?version=1&table=Acceptance2">b0L-SRA450</a> <a href="79165?version=1&table=Acceptance3">b0L-SRA550</a> <a href="79165?version=1&table=Acceptance4">b0L-SRB</a> <a href="79165?version=1&table=Acceptance5">b0L-SRC</a> <a href="79165?version=1&table=Acceptance6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Acceptance7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Acceptance8">b1L-SRA450</a> <a href="79165?version=1&table=Acceptance9">b1L-SRA600</a> <a href="79165?version=1&table=Acceptance10">b1L-SRA750</a> <a href="79165?version=1&table=Acceptance11">b1L-SRB</a> <a href="79165?version=1&table=Acceptance12">b1L-best</a><br/><br/><b>Efficiency:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Efficiency1">b0L-SRA350</a> <a href="79165?version=1&table=Efficiency2">b0L-SRA450</a> <a href="79165?version=1&table=Efficiency3">b0L-SRA550</a> <a href="79165?version=1&table=Efficiency4">b0L-SRB</a> <a href="79165?version=1&table=Efficiency5">b0L-SRC</a> <a href="79165?version=1&table=Efficiency6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Efficiency7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Efficiency8">b1L-SRA450</a> <a href="79165?version=1&table=Efficiency9">b1L-SRA600</a> <a href="79165?version=1&table=Efficiency10">b1L-SRA750</a> <a href="79165?version=1&table=Efficiency11">b1L-SRB</a> <a href="79165?version=1&table=Efficiency12">b1L-best</a><br/><br/><b>Best SR Mapping:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=BestSR4">b0L</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=BestSR1">b1L</a> <a href="79165?version=1&table=BestSR2">b0L</a> <a href="79165?version=1&table=BestSR3">combined</a><br/><br/><b>Exclusion Contour:</b><br/><i>symmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour1">exp</a>&nbsp;<a href="79165?version=1&table=Contour2">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour5">exp</a>&nbsp;<a href="79165?version=1&table=Contour6">obs</a> b0L-SRA550&nbsp;<a href="79165?version=1&table=Contour9">exp</a>&nbsp;<a href="79165?version=1&table=Contour10">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour11">exp</a>&nbsp;<a href="79165?version=1&table=Contour12">obs</a> b0L-SRC&nbsp;<a href="79165?version=1&table=Contour15">exp</a>&nbsp;<a href="79165?version=1&table=Contour16">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour17">exp</a>&nbsp;<a href="79165?version=1&table=Contour18">obs</a><br/><i>asymmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour3">exp</a>&nbsp;<a href="79165?version=1&table=Contour4">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour7">exp</a>&nbsp;<a href="79165?version=1&table=Contour8">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour13">exp</a>&nbsp;<a href="79165?version=1&table=Contour14">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour19">exp</a>&nbsp;<a href="79165?version=1&table=Contour20">obs</a> b1L-SRA300-2j&nbsp;<a href="79165?version=1&table=Contour21">exp</a>&nbsp;<a href="79165?version=1&table=Contour22">obs</a> b1L-SRA450&nbsp;<a href="79165?version=1&table=Contour23">exp</a>&nbsp;<a href="79165?version=1&table=Contour24">obs</a> b1L-SRA600&nbsp;<a href="79165?version=1&table=Contour25">exp</a>&nbsp;<a href="79165?version=1&table=Contour26">obs</a> b1L-SRA750&nbsp;<a href="79165?version=1&table=Contour27">exp</a>&nbsp;<a href="79165?version=1&table=Contour28">obs</a> b1L-SRB&nbsp;<a href="79165?version=1&table=Contour29">exp</a>&nbsp;<a href="79165?version=1&table=Contour30">obs</a> b1L-best&nbsp;<a href="79165?version=1&table=Contour31">exp</a>&nbsp;<a href="79165?version=1&table=Contour32">obs</a> A-LowMass&nbsp;<a href="79165?version=1&table=Contour33">exp</a>&nbsp;<a href="79165?version=1&table=Contour34">obs</a> A-HighMass&nbsp;<a href="79165?version=1&table=Contour35">exp</a>&nbsp;<a href="79165?version=1&table=Contour36">obs</a> B combination&nbsp;<a href="79165?version=1&table=Contour37">exp</a>&nbsp;<a href="79165?version=1&table=Contour38">obs</a> Best combination&nbsp;<a href="79165?version=1&table=Contour39">exp</a>&nbsp;<a href="79165?version=1&table=Contour40">obs</a><br/><br/><b>SR Distribution:</b><br/><a href="79165?version=1&table=SRdistribution1">b0L-SRA</a>: $m_{\mathrm{CT}}$ <a href="79165?version=1&table=SRdistribution2">b0L-SRB</a>: $\mathrm{min[m_{T}(jet_{1-4}, E_{T}^{miss})]}$ <a href="79165?version=1&table=SRdistribution3">b0L-SRC</a>: ${\cal A}$ <a href="79165?version=1&table=SRdistribution4">b1L-SRA300-2j</a>: $\mathrm{m_{bb}}$ <a href="79165?version=1&table=SRdistribution5">b1L-SRA</a>: $\mathrm{m_{eff}}$ <a href="79165?version=1&table=SRdistribution6">b1L-SRB</a>: $\mathrm{m_{T}}$<br/><br/><b>Cross section upper limit:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Limitoncrosssection1">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection2">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection3">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection4">b0L-SRA550</a> <a href="79165?version=1&table=Limitoncrosssection5">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection6">b0L-SRC</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Limitoncrosssection7">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection8">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection9">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection10">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection11">b1L-best</a> <a href="79165?version=1&table=Limitoncrosssection12">b1L-SRA300-2j</a> <a href="79165?version=1&table=Limitoncrosssection13">b1L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection14">b1L-SRA600</a> <a href="79165?version=1&table=Limitoncrosssection15">b1L-SRA750</a> <a href="79165?version=1&table=Limitoncrosssection16">b1L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection17">best combination</a> <a href="79165?version=1&table=Limitoncrosssection18">A-LowMass</a> <a href="79165?version=1&table=Limitoncrosssection19">A-HighMass</a> <a href="79165?version=1&table=Limitoncrosssection20">B combination</a><br/><br/><b>Cutflow:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=CutflowTable1">b0L-SRA (1 TeV, 1 GeV)</a> <a href="79165?version=1&table=CutflowTable2">b0L-SRB (700 GeV, 450 GeV)</a> <a href="79165?version=1&table=CutflowTable3">b0L-SRC (450 GeV, 430 GeV)</a><br/><i>mixed:</i> <a href="79165?version=1&table=CutflowTable4">b1L-SRA (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable5">b1L-SRA300-2j (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable6">b0L-SRA (700 GeV, 300 GeV)</a><br/><br/><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left)

- - - - - - - - - - - - - - - - - - - - <br/><b>Acceptance:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Acceptance1">b0L-SRA350</a> <a href="79165?version=1&table=Acceptance2">b0L-SRA450</a> <a href="79165?version=1&table=Acceptance3">b0L-SRA550</a> <a href="79165?version=1&table=Acceptance4">b0L-SRB</a> <a href="79165?version=1&table=Acceptance5">b0L-SRC</a> <a href="79165?version=1&table=Acceptance6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Acceptance7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Acceptance8">b1L-SRA450</a> <a href="79165?version=1&table=Acceptance9">b1L-SRA600</a> <a href="79165?version=1&table=Acceptance10">b1L-SRA750</a> <a href="79165?version=1&table=Acceptance11">b1L-SRB</a> <a href="79165?version=1&table=Acceptance12">b1L-best</a><br/><br/><b>Efficiency:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Efficiency1">b0L-SRA350</a> <a href="79165?version=1&table=Efficiency2">b0L-SRA450</a> <a href="79165?version=1&table=Efficiency3">b0L-SRA550</a> <a href="79165?version=1&table=Efficiency4">b0L-SRB</a> <a href="79165?version=1&table=Efficiency5">b0L-SRC</a> <a href="79165?version=1&table=Efficiency6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Efficiency7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Efficiency8">b1L-SRA450</a> <a href="79165?version=1&table=Efficiency9">b1L-SRA600</a> <a href="79165?version=1&table=Efficiency10">b1L-SRA750</a> <a href="79165?version=1&table=Efficiency11">b1L-SRB</a> <a href="79165?version=1&table=Efficiency12">b1L-best</a><br/><br/><b>Best SR Mapping:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=BestSR4">b0L</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=BestSR1">b1L</a> <a href="79165?version=1&table=BestSR2">b0L</a> <a href="79165?version=1&table=BestSR3">combined</a><br/><br/><b>Exclusion Contour:</b><br/><i>symmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour1">exp</a>&nbsp;<a href="79165?version=1&table=Contour2">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour5">exp</a>&nbsp;<a href="79165?version=1&table=Contour6">obs</a> b0L-SRA550&nbsp;<a href="79165?version=1&table=Contour9">exp</a>&nbsp;<a href="79165?version=1&table=Contour10">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour11">exp</a>&nbsp;<a href="79165?version=1&table=Contour12">obs</a> b0L-SRC&nbsp;<a href="79165?version=1&table=Contour15">exp</a>&nbsp;<a href="79165?version=1&table=Contour16">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour17">exp</a>&nbsp;<a href="79165?version=1&table=Contour18">obs</a><br/><i>asymmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour3">exp</a>&nbsp;<a href="79165?version=1&table=Contour4">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour7">exp</a>&nbsp;<a href="79165?version=1&table=Contour8">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour13">exp</a>&nbsp;<a href="79165?version=1&table=Contour14">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour19">exp</a>&nbsp;<a href="79165?version=1&table=Contour20">obs</a> b1L-SRA300-2j&nbsp;<a href="79165?version=1&table=Contour21">exp</a>&nbsp;<a href="79165?version=1&table=Contour22">obs</a> b1L-SRA450&nbsp;<a href="79165?version=1&table=Contour23">exp</a>&nbsp;<a href="79165?version=1&table=Contour24">obs</a> b1L-SRA600&nbsp;<a href="79165?version=1&table=Contour25">exp</a>&nbsp;<a href="79165?version=1&table=Contour26">obs</a> b1L-SRA750&nbsp;<a href="79165?version=1&table=Contour27">exp</a>&nbsp;<a href="79165?version=1&table=Contour28">obs</a> b1L-SRB&nbsp;<a href="79165?version=1&table=Contour29">exp</a>&nbsp;<a href="79165?version=1&table=Contour30">obs</a> b1L-best&nbsp;<a href="79165?version=1&table=Contour31">exp</a>&nbsp;<a href="79165?version=1&table=Contour32">obs</a> A-LowMass&nbsp;<a href="79165?version=1&table=Contour33">exp</a>&nbsp;<a href="79165?version=1&table=Contour34">obs</a> A-HighMass&nbsp;<a href="79165?version=1&table=Contour35">exp</a>&nbsp;<a href="79165?version=1&table=Contour36">obs</a> B combination&nbsp;<a href="79165?version=1&table=Contour37">exp</a>&nbsp;<a href="79165?version=1&table=Contour38">obs</a> Best combination&nbsp;<a href="79165?version=1&table=Contour39">exp</a>&nbsp;<a href="79165?version=1&table=Contour40">obs</a><br/><br/><b>SR Distribution:</b><br/><a href="79165?version=1&table=SRdistribution1">b0L-SRA</a>: $m_{\mathrm{CT}}$ <a href="79165?version=1&table=SRdistribution2">b0L-SRB</a>: $\mathrm{min[m_{T}(jet_{1-4}, E_{T}^{miss})]}$ <a href="79165?version=1&table=SRdistribution3">b0L-SRC</a>: ${\cal A}$ <a href="79165?version=1&table=SRdistribution4">b1L-SRA300-2j</a>: $\mathrm{m_{bb}}$ <a href="79165?version=1&table=SRdistribution5">b1L-SRA</a>: $\mathrm{m_{eff}}$ <a href="79165?version=1&table=SRdistribution6">b1L-SRB</a>: $\mathrm{m_{T}}$<br/><br/><b>Cross section upper limit:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Limitoncrosssection1">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection2">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection3">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection4">b0L-SRA550</a> <a href="79165?version=1&table=Limitoncrosssection5">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection6">b0L-SRC</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Limitoncrosssection7">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection8">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection9">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection10">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection11">b1L-best</a> <a href="79165?version=1&table=Limitoncrosssection12">b1L-SRA300-2j</a> <a href="79165?version=1&table=Limitoncrosssection13">b1L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection14">b1L-SRA600</a> <a href="79165?version=1&table=Limitoncrosssection15">b1L-SRA750</a> <a href="79165?version=1&table=Limitoncrosssection16">b1L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection17">best combination</a> <a href="79165?version=1&table=Limitoncrosssection18">A-LowMass</a> <a href="79165?version=1&table=Limitoncrosssection19">A-HighMass</a> <a href="79165?version=1&table=Limitoncrosssection20">B combination</a><br/><br/><b>Cutflow:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=CutflowTable1">b0L-SRA (1 TeV, 1 GeV)</a> <a href="79165?version=1&table=CutflowTable2">b0L-SRB (700 GeV, 450 GeV)</a> <a href="79165?version=1&table=CutflowTable3">b0L-SRC (450 GeV, 430 GeV)</a><br/><i>mixed:</i> <a href="79165?version=1&table=CutflowTable4">b1L-SRA (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable5">b1L-SRA300-2j (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable6">b0L-SRA (700 GeV, 300 GeV)</a><br/><br/><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left)

Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA350 signal region.

More…