Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS ALFA spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2020) 042, 2020.
Inspire Record 1762584 DOI 10.17182/hepdata.93063

A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

3 data tables match query

Hadron-level differential SD cross section as a function of Delta Eta.

Hadron-level differential SD cross section as a function of t.

Hadron-level differential SD cross section as a function of log_10 xi.


Search for heavy neutral leptons in decays of $W$ bosons produced in 13 TeV $pp$ collisions using prompt and displaced signatures with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2019) 265, 2019.
Inspire Record 1736526 DOI 10.17182/hepdata.91136

The problems of neutrino masses, matter-antimatter asymmetry, and dark matter could be successfully addressed by postulating right-handed neutrinos with Majorana masses below the electroweak scale. In this work, leptonic decays of $W$ bosons extracted from 32.9 fb$^{-1}$ to 36.1 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC are used to search for heavy neutral leptons (HNLs) that are produced through mixing with muon or electron neutrinos. The search is conducted using the ATLAS detector in both prompt and displaced leptonic decay signatures. The prompt signature requires three leptons produced at the interaction point (either $\mu\mu e$ or $e e\mu$) with a veto on same-flavour opposite-charge topologies. The displaced signature comprises a prompt muon from the $W$ boson decay and the requirement of a dilepton vertex (either $\mu\mu$ or $\mu e$) displaced in the transverse plane by 4-300 mm from the interaction point. The search sets constraints on the HNL mixing to muon and electron neutrinos for HNL masses in the range 4.5-50 GeV.

8 data tables match query

Displaced HNL event selection efficiency as a function of mean proper decay length for HNL mass 5, 7.5, 10 and 12.5 GeV.

Prompt HNL event selection efficiency as a function of mean proper decay length for HNL mass 10 GeV.

Displaced HNL search observed 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNC case).

More…

Search for light long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} =$ 13 TeV and decaying into collimated leptons or light hadrons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 450, 2020.
Inspire Record 1752519 DOI 10.17182/hepdata.91132

Several models of physics beyond the Standard Model predict the existence of dark photons, light neutral particles decaying into collimated leptons or light hadrons. This paper presents a search for long-lived dark photons produced from the decay of a Higgs boson or a heavy scalar boson and decaying into displaced collimated Standard Model fermions. The search uses data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV recorded in 2015-2016 with the ATLAS detector at the Large Hadron Collider. The observed number of events is consistent with the expected background, and limits on the production cross section times branching fraction as a function of the proper decay length of the dark photon are reported. A cross section times branching fraction above 4 pb is excluded for a Higgs boson decaying into two dark photons for dark-photon decay lengths between 1.5 mm and 307 mm.

19 data tables match query

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 4\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 800 GeV in the muon-muon final state.

More…

Version 2
Measurement of the $Z(\rightarrow\ell^+\ell^-)\gamma$ production cross-section in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 054, 2020.
Inspire Record 1764342 DOI 10.17182/hepdata.89875

The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.

14 data tables match query

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section vs $E_{\mathrm{T}}^\gamma$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

More…

Measurement of the $t\bar{t}$ production cross-section and lepton differential distributions in $e\mu $ dilepton events from $pp$ collisions at $\sqrt{s}=13\,\text {TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 528, 2020.
Inspire Record 1759875 DOI 10.17182/hepdata.91242

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in proton$-$proton collisions at $\sqrt{s}=13$ TeV, using $36.1$ fb$^{-1}$ of data collected in 2015$-$16 by the ATLAS experiment at the LHC. Using events with an opposite-charge $e\mu$ pair and $b$-tagged jets, the cross-section is measured to be: \begin{equation}\nonumber \sigma_{t\bar{t}} = 826.4 \pm 3.6\,\mathrm{(stat)}\ \pm 11.5\,\mathrm{(syst)}\ \pm 15.7\,\mathrm{(lumi)}\ \pm 1.9\,\mathrm{(beam)}\,\mathrm{pb}, \end{equation} where the uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, the integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. It is used to determine the top quark pole mass via the dependence of the predicted cross-section on $m_t^{\mathrm{pole}}$, giving $m_t^{\mathrm{pole}}=173.1^{+2.0}_{-2.1}$ GeV. It is also combined with measurements at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV to derive ratios and double ratios of $t\bar{t}$ and $Z$ cross-sections at different energies. The same event sample is used to measure absolute and normalised differential cross-sections as functions of single-lepton and dilepton kinematic variables, and the results compared with predictions from various Monte Carlo event generators.

59 data tables match query

Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 23 and 24.

Normalised differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 25 and 26.

Absolute differential cross-section in the fiducial region as a function of lepton |eta|. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The corresponding correlation matrices are given in Tables 27 and 28.

More…

Search for long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} = 13$ TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052013, 2020.
Inspire Record 1767646 DOI 10.17182/hepdata.92075

A search is presented for pair-production of long-lived neutral particles using 33 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of long-lived hidden-sector scalars with masses from 8 GeV to 400 GeV. The limits placed on several low-mass scalars extend previous exclusion limits in the range of proper lifetimes $c \tau$ from 5 cm to 1 m.

41 data tables match query

IDVx selection efficiency as a function of the radial decay position for $m_H = 125$ GeV.

IDVx selection efficiency as a function of the radial decay position for $m_s = 50$ GeV.

Observed $CL_S$ limits on $BR$ for $m_H = 125$ GeV.

More…

Measurement of $W^\pm$ boson production in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 935, 2019.
Inspire Record 1746053 DOI 10.17182/hepdata.91908

A measurement of $W^\pm$ boson production in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of $0.49\;\mathrm{nb^{-1}}$. The $W^\pm$ bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying $W^\pm$ bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for $W^+$ and $W^-$ bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the $W^\pm$ boson production cross-sections measured in $pp$ collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for $W^-$ ($W^+$) bosons.

10 data tables match query

Differential normalised production yields for $W^+$ bosons as a function of absolute pseudorapidity of the charged lepton for the combined electron and muon channels. Systematic uncertainties related to $T_{\mathrm{AA}}$ are not included.

Differential normalised production yields for $W^-$ bosons as a function of absolute pseudorapidity of the charged lepton for the combined electron and muon channels. Systematic uncertainties related to $T_{\mathrm{AA}}$ are not included.

Combined result for lepton charge asymmetry.

More…

Version 3
Search for high-mass dilepton resonances using 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 796 (2019) 68-87, 2019.
Inspire Record 1725190 DOI 10.17182/hepdata.88425

A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=$13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb$^{-1}$. A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E6-motivated $Z^\prime_\psi$ boson. Also presented are limits on Heavy Vector Triplet model couplings.

72 data tables match query

Distribution of the dielectron invariant mass for events passing the full selection.

Distribution of the dielectron invariant mass for events passing the full selection.

Distribution of the dielectron invariant mass for events passing the full selection.

More…

Version 2
A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 092001, 2018.
Inspire Record 1637587 DOI 10.17182/hepdata.79953

Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log$_{10}\rho^2$, where $\rho$ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

24 data tables match query

Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 3b. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

More…

Evidence for the production of three massive vectorbosons in $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
PoS DIS2019 (2019) 135, 2019.
Inspire Record 1726499 DOI 10.17182/hepdata.89323

A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.

2 data tables match query

Measurement of the $WWW$ cross section.

Measurement of the $WWZ$ cross section.