Precise study of the Z/gamma* boson transverse momentum distribution in ppbar collisions using a novel technique

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Abolins, Maris A. ; et al.
Phys.Rev.Lett. 106 (2011) 122001, 2011.
Inspire Record 871787 DOI 10.17182/hepdata.56732

Using 7.3 pb-1 of ppbar collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable \phistar, which probes the same physical effects as the Z/gamma* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the \phistar distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.

2 data tables match query

The measured PHI* distributions for the dielectron events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.

The measured PHI* distributions for the dimuon events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.


Observation of s-channel production of single top quarks at the Tevatron

The CDF & D0 collaborations Aaltonen, Timo Antero ; Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 112 (2014) 231803, 2014.
Inspire Record 1282028 DOI 10.17182/hepdata.64717

We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The measured cross section is $\sigma_s = 1.29^{+0.26}_{-0.24}$ pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is $1.8 \times 10^{-10}$, corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks.

1 data table match query

The measured cross section of single-top-quark production in the s channel.