The polarisation of prompt $\psi(2S)$ mesons is measured by performing an angular analysis of $\psi(2S)\rightarrow \mu^{+} \mu^{-}$ decays using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb detector at a centre-of-mass energy of 7 TeV. The polarisation is measured in bins of transverse momentum $p_\mathrm{T}$ and rapidity $y$ in the kinematic region $3.5
The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2
The cross-section for inelastic proton-proton collisions, with at least one prompt long-lived charged particle of transverse momentum $p_{\rm T}>0.2$ GeV/$c$ in the pseudorapidity range $2.0<\eta<4.5$, is measured by the LHCb experiment at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The cross-section in this kinematic range is determined to be $\sigma_{\rm inel}^{\rm acc} = 55.0 \pm 2.4$ mb within the spectrometer acceptance with an experimental uncertainty that is dominated by systematic contributions. Extrapolation to the full phase space, using PYTHIA 6, yields $\sigma_{\rm inel} = 66.9 \pm 2.9 \pm 4.4$ mb, where the first uncertainty is experimental and the second is due to the extrapolation.
An angular analysis and a measurement of the differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-$ are presented, using data corresponding to an integrated luminosity of $3.0\, {\rm fb^{-1}}$ of $pp$ collisions recorded by the LHCb experiment at $\sqrt{s} = 7$ and $8\, {\rm TeV}$. Measurements are reported as a function of $q^{2}$, the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range $1
A study of $\chi_{b}$ meson production at LHCb is performed on proton-proton collision data, corresponding to 3.0fb$^{-1}$ of integrated luminosity collected at centre-of-mass energies $\sqrt{s}=7$ and 8TeV. The fraction of $\Upsilon(nS)$ mesons originating from $\chi_{b}$ decays is measured as a function of the $\Upsilon$ transverse momentum in the rapidity range $2.0 < y^{\Upsilon} < 4.5$. The radiative transition of the $\chi_{b}(3P)$ meson to $\Upsilon(3S)$ is observed for the first time. The $\chi_{b1}(3P)$ mass is determined to be $$m(\chi_{b1}(3P)) = 10\,511.3 \pm 1.7 \pm 2.5 MeV/c^2,$$ where the first uncertainty is statistical and the second is systematic.
The forward-backward charge asymmetry for the process $q\bar{q} \rightarrow Z/\gamma^{\ast} \rightarrow \mu^{+}\mu^{-}$ is measured as a function of the invariant mass of the dimuon system. Measurements are performed using proton proton collision data collected with the LHCb detector at $\sqrt{s} = 7$ and 8\tev, corresponding to integrated luminosities of $1$fb$^{-1}$ and $2$fb$^{-1}$ respectively. Within the Standard Model the results constrain the effective electroweak mixing angle to be $$sin^{2}\theta_{W}^{eff} = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056 $$ where the first uncertainty is statistical, the second systematic and the third theoretical. This result is in agreement with the current world average, and is one of the most precise determinations at hadron colliders to date.
Production of $B_c^+$ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of $2.0~{\rm fb}^{-1}$ recorded by the LHCb experiment. The ratio of production cross-sections times branching fractions between the $B_c^+\to J/\psi \pi^+$ and $B^+\to J/\psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_{\rm T} < 20~{\rm GeV}/c$ and $2.0 < y < 4.5$. The ratio in this kinematic range is measured to be $(0.683\pm0.018\pm0.009)\%$, where the first uncertainty is statistical and the second systematic.
Measurements of the cross-section for producing \bquark quarks in the reaction $pp\to b\bar{b} X$ are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity $\eta$ in the range $2<\eta<5$ covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of $b$-flavored hadrons decaying into a ground-state charmed hadron in association with a muon. The cross-sections in the covered $\eta$ range are $72.0\pm 0.3\pm6.8~\mu$b and $144\pm 1\pm 21~\mu$b for 7 and 13 TeV. The ratio is $2.00\pm0.02\pm0.26$, where the quoted uncertainties are statistical and systematic, respectively. The agreement with theoretical expectation is good at 7 TeV, but differs somewhat at 13 TeV. The measured ratio of cross-sections is larger at lower $\eta$ than the model prediction.
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
The production of $\chi_b$ mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of $\sqrt{s}=7$ and $8$ TeV and corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The $\chi_b$ mesons are identified through their decays to $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ using photons that converted to $e^+e^-$ pairs in the detector. The relative prompt production rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ mesons is measured as a function of the $\Upsilon(1S)$ transverse momentum in the $\chi_b$ rapidity range $2.0