A search for pair production of bottom squarks in events with hadronically decaying $\tau$-leptons, $b$-tagged jets and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino $\tilde \chi_2^0$ and a bottom quark, with $\tilde \chi_2^0$ decaying into a Higgs boson and the lightest neutralino $\tilde \chi_1^0$. The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying $\tau$-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the $\tilde \chi_2^0$, where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between $\tilde \chi_2^0$ and $\tilde \chi_1^0$. Model-independent upper limits are also set on the cross section of processes beyond the Standard Model.
The production of the hypertriton nuclei $^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ has been measured for the first time in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE experiment at LHC energies. The total yield, d$N$/d$y$ $\times \mathrm{B.R.}_{\left( ^{3}_{\Lambda}\mathrm H \rightarrow ^{3}\mathrm{He},\pi^{-} \right)} = \left( 3.86 \pm 0.77 (\mathrm{stat.}) \pm 0.68 (\mathrm{syst.})\right) \times 10^{-5}$ in the 0-10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter $B_3$ shows a dependence on the transverse momentum, similar to the $B_2$ of deuterons and the $B_3$ of $^{3}\mathrm{He}$ nuclei. The ratio of yields $S_3$ = $^{3}_{\Lambda}\mathrm H$/($^{3}\mathrm{He}$ $\times \Lambda/\mathrm{p}$) was measured to be $S_3$ = 0.60 $\pm$ 0.13 (stat.) $\pm$ 0.21 (syst.) in 0-10% centrality events; this value is compared to different theoretical models. The measured $S_3$ is fully compatible with thermal model predictions. The measured $^{3}_{\Lambda}\mathrm H$ lifetime, $ \tau = 181^{+54}_{-39} (\mathrm{stat.}) \pm 33 (\mathrm{syst.})\ \mathrm{ps}$ is compatible within 1$\sigma$ with the world average value.
Measurements of $\mathrm{B}^*_\mathrm{s2}(5840)^0$ and $\mathrm{B}_\mathrm{s1}(5830)^0$ mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.6 fb$^{-1}$, collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV. The analysis studies $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson decays into $\mathrm{B}^{(*)+}\mathrm{K}^-$ and $\mathrm{B}^{(*)0}\mathrm{K}^0_\mathrm{S}$, where the $\mathrm{B}^+$ and $\mathrm{B}^0$ mesons are identified using the decays $\mathrm{B}^+\to\mathrm{J}/\psi\,\mathrm{K}^+$ and $\mathrm{B}^0\to\mathrm{J}/\psi\,\mathrm{K}^*(892)^0$. The masses of the $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson states are measured and the natural width of the $\mathrm{B}^*_\mathrm{s2}(5840)^0$ state is determined. The first measurement of the mass difference between the charged and neutral $\mathrm{B}^*$ mesons is also presented. The $\mathrm{B}^*_\mathrm{s2}(5840)^0$ decay to $\mathrm{B}^0\mathrm{K}^0_\mathrm{S}$ is observed, together with a measurement of its branching fraction relative to the $\mathrm{B}^*_\mathrm{s2}(5840)^0\to\mathrm{B}^+\mathrm{K}^-$ decay.
The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.
Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range "ridge-like" correlations are observed for pairs with small relative azimuthal angle ($|\Delta\phi|<\pi/3$) and back-to-back pairs ($|\Delta\phi| > 2\pi/3$) over the transverse momentum range $0.4 < p_{\rm T} < 12$ GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fourier decomposed to obtain the harmonics $v_n$ as a function of $p_{\rm T}$ and event activity. The extracted $v_n$ values for $n=2$ to 5 decrease with $n$. The $v_2$ and $v_3$ values are found to be positive in the measured $p_{\rm T}$ range. The $v_1$ is also measured as a function of $p_{\rm T}$ and is observed to change sign around $p_{\rm T}\approx 1.5$-2.0 GeV and then increase to about 0.1 for $p_{\rm T}>4$ GeV. The $v_2(p_{\rm T})$, $v_3(p_{\rm T})$ and $v_4(p_{\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\rm T}$ of particles produced in the two collision systems.
We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at $\sqrt{s} = 0.9$, $2.76$, and $7$ TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using the PYTHIA6, PYTHIA8, and PHOJET event generators.
In this Letter, comprehensive results on ${\rm\pi}^\pm$, K$^\pm$, K$^0_S$, p, $\rm\bar{p}$, $\rm \Lambda$ and $\rm \bar{\Lambda}$ production at mid-rapidity ($0 < y_{\rm cms} < 0.5$) in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, measured by the ALICE detector at the LHC, are reported. The transverse momentum distributions exhibit a hardening as a function of event multiplicity, which is stronger for heavier particles. This behavior is similar to what has been observed in pp and Pb-Pb collisions at the LHC. The measured $p_{\rm T}$ distributions are compared to results at lower energy and with predictions based on QCD-inspired and hydrodynamic models.
A search for pair-produced scalar particles decaying to a four-jet final state is presented. The analysis is performed using an integrated luminosity of 34 pb^-1 recorded by the ATLAS detector in 2010. No deviation from the Standard Model is observed. For a scalar mass of 100 GeV (190 GeV) the limit on the scalar gluon pair production cross section at 95% confidence level is 1 nb (0.28 nb). When these results are interpreted as mass limits, scalar-gluons (hyperpions) with masses of 100 to 185 GeV (100 to 155 GeV) are excluded at 95% confidence level with the exception of a mass window of width about 5 GeV (15 GeV) around 140 GeV.
A search for new physics is performed based on all-hadronic events with large missing transverse momentum produced in proton-proton collisions at sqrt(s) = 13 TeV. The data sample, corresponding to an integrated luminosity of 2.3 inverse femtobarns, was collected with the CMS detector at the CERN LHC in 2015. The data are examined in search regions of jet multiplicity, tagged bottom quark jet multiplicity, missing transverse momentum, and the scalar sum of jet transverse momenta. The observed numbers of events in all search regions are found to be consistent with the expectations from standard model processes. Exclusion limits are presented for simplified supersymmetric models of gluino pair production. Depending on the assumed gluino decay mechanism, and for a massless, weakly interacting, lightest neutralino, lower limits on the gluino mass from 1440 to 1600 GeV are obtained, significantly extending previous limits.
In this paper, a new technique for reconstructing and identifying hadronically decaying $\tau^+\tau^-$ pairs with a large Lorentz boost, referred to as the di-$\tau$ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-$\tau$ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $b\bar{b}$ pair and the other into a boosted $\tau^+\tau^-$ pair, with two hadronically decaying $\tau$-leptons in the final state. Using 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-$\tau$ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-$\tau$ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon$-$gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1$-$3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.