Date

Collaboration

Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in $pp$ collision data at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 87, 2016.
Inspire Record 1392455 DOI 10.17182/hepdata.75528

This paper reports inclusive and differential measurements of the $t\bar{t}$ charge asymmetry $A_{\textrm{C}}$ in 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV $pp$ collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. The $t\bar{t}$ pairs are selected in the single-lepton channels ($e$ or $\mu$) with at least four jets, and a likelihood fit is used to reconstruct the $t\bar{t}$ event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive $t\bar{t}$ charge asymmetry is measured to be $A_{\textrm{C}} = 0.009 \pm 0.005$ (stat.$+$syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard Model.

0 data tables match query

Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ with the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 104, 2016.
Inspire Record 1444991 DOI 10.17182/hepdata.76843

This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ channel, using 20.3 fb$^{-1}$ of proton-proton collision data. The data were produced at a centre-of-mass energy of $\sqrt{s} = 8$ TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.

0 data tables match query

Measurement of the correlations between the polar angles of leptons from top quark decays in the helicity basis at $\sqrt{s}=7$TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 012002, 2016.
Inspire Record 1400803 DOI 10.17182/hepdata.76911

A measurement of the correlations between the polar angles of leptons from the decay of pair-produced $t$ and $\bar{t}$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6fb$^{-1}$ at a center-of-mass energy of $\sqrt{s}=7$TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles $\theta_1$ and $\theta_2$ between the charged leptons and the direction of motion of the parent quarks in the $t\bar{t}$ rest frame are sensitive to the spin information, and the distribution of {\mbox{$\cos\theta_1\cdot\cos\theta_2$}} is sensitive to the spin correlation between the $t$ and $\bar{t}$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.

0 data tables match query

Combination of the searches for pair-produced vector-like partners of the third-generation quarks at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 211801, 2018.
Inspire Record 1685421 DOI 10.17182/hepdata.83541

A combination of the searches for pair-produced vector-like partners of the top and bottom quarks in various decay channels ($T$$\rightarrow$$Zt/Wb/Ht$, $B$$\rightarrow$$Zb/Wt/Hb$) is performed using 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The observed data are found to be in good agreement with the Standard Model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross-section for a range of vector-like quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vector-like quarks decay to Standard Model particles. A singlet $T$ is excluded for masses below 1.31 TeV and a singlet $B$ is excluded for masses below 1.22 TeV. Assuming a weak isospin $(T,B)$ doublet and $|V_{Tb}| \ll |V_{tB}|$, $T$ and $B$ masses below 1.37 TeV are excluded.

0 data tables match query

Search for pair production of heavy vector-like quarks decaying into hadronic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 092005, 2018.
Inspire Record 1685207 DOI 10.17182/hepdata.83661

A search is presented for the pair production of heavy vector-like quarks, $T\bar T$ or $B\bar B$, that decay into final states with jets and no reconstructed leptons. Jets in the final state are classified using a deep neural network as arising from hadronically decaying $W/Z$ bosons, Higgs bosons, top quarks, or background. The analysis uses data from the ATLAS experiment corresponding to 36.1 fb$^{-1}$ of proton-proton collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV delivered by the Large Hadron Collider in 2015 and 2016. No significant deviation from the Standard Model expectation is observed. Results are interpreted assuming the vector-like quarks decay into a Standard Model boson and a third-generation-quark, $T\rightarrow Wb,Ht,Zt$ or $B\rightarrow Wt,Hb,Zb$, for a variety of branching ratios. At 95% confidence level, the observed (expected) lower limit on the vector-like $B$-quark mass for a weak-isospin doublet ($B, Y$) is 950 (890) GeV, and the lower limits on the masses for the pure decays $B\rightarrow Hb$ and $T\rightarrow Ht$, where these results are strongest, are 1010 (970) GeV and 1010 (1010) GeV, respectively.

0 data tables match query

Search for a heavy Higgs boson decaying into a $Z$ boson and another heavy Higgs boson in the $\ell\ell bb$ final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 783 (2018) 392-414, 2018.
Inspire Record 1665828 DOI 10.17182/hepdata.82527

A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the $Z$ boson decaying to electrons or muons and the $H$ boson into a pair of $b$-quarks. No evidence for the production of an $A$ boson is found. Considering each production process separately, the 95% confidence-level upper limits on the $pp\rightarrow A\rightarrow ZH$ production cross-section times the branching ratio $H\rightarrow bb$ are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the $b$-associated process for the mass ranges 130-700 GeV of the $H$ boson and process for the mass ranges 130-700 GeV of the $H$ boson and 230-800 GeV of the $A$ boson. The results are interpreted in the context of the two-Higgs-doublet model.

0 data tables match query

Search for the production of a long-lived neutral particle decaying within the ATLAS hadronic calorimeter in association with a $Z$ boson from $pp$ collisions at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 122 (2019) 151801, 2019.
Inspire Record 1702261 DOI 10.17182/hepdata.83963

This Letter presents a search for the production of a long-lived neutral particle ($Z_d$) decaying within the ATLAS hadronic calorimeter, in association with a Standard Model (SM) $Z$ boson produced via an intermediate scalar boson, where $Z\to l^+l^-$ ($l=e,\mu$). The data used were collected by the ATLAS detector during 2015 and 2016 $pp$ collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV at the Large Hadron Collider and corresponds to an integrated luminosity of $36.1\pm0.8$ fb$^{-1}$. No significant excess of events is observed above the expected background. Limits on the production cross section of the scalar boson times its decay branching fraction into the long-lived neutral particle are derived as a function of the mass of the intermediate scalar boson, the mass of the long-lived neutral particle, and its $c\tau$ from a few centimeters to one hundred meters. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a $c\tau$ approximately between 0.1 m and 7 m is excluded with a 95% confidence level up to 10% for $m_{Z_d}$ between 5 and 15 GeV.

0 data tables match query

Search for pair- and single-production of vector-like quarks in final states with at least one $Z$ boson decaying into a pair of electrons or muons in $pp$ collision data collected with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 112010, 2018.
Inspire Record 1679959 DOI 10.17182/hepdata.83660

A search for vectorlike quarks is presented, which targets their decay into a $Z$ boson and a third-generation Standard Model quark. In the case of a vectorlike quark $T$ ($B$) with charge $+2/3e$ ($-1/3e$), the decay searched for is $T \rightarrow Zt$ ($B \rightarrow Zb$). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The final state used is characterized by the presence of $b$-tagged jets, as well as a $Z$ boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair and single production of vectorlike quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as - in the case of the single-production selections - the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vectorlike quarks of $m_T > 1030$ GeV ($m_T > 1210$ GeV) and $m_B > 1010$ GeV ($m_B > 1140$ GeV) in the singlet (doublet) model. In the case of 100% branching ratio for $T\rightarrow Zt$ ($B\rightarrow Zb$), the limits are $m_T > 1340$ GeV ($m_B > 1220$ GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vectorlike quark masses.

0 data tables match query

Measurement of the $ Z\gamma \to \nu \overline{\nu}\gamma $ production cross section in pp collisions at $ \sqrt{s}=13 $ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2018) 010, 2018.
Inspire Record 1698006 DOI 10.17182/hepdata.83965

The production of $Z$ bosons in association with a high-energy photon ($Z\gamma$ production) is studied in the neutrino decay channel of the $Z$ boson using $pp$ collisions at $\sqrt{s}$ = 13 TeV. The analysis uses a data sample with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate $Z\gamma$ events with invisible decays of the $Z$ boson are selected by requiring significant transverse momentum ($p_{T}$) of the dineutrino system in conjunction with a single isolated photon with large transverse energy ($E_{T}$). The rate of $Z\gamma$ production is measured as a function of photon $E_{T}$, dineutrino system $p_{T}$ and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in $Z\gamma$ production with photon $E_{T}$ greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of $ZZ\gamma$ and $Z\gamma\gamma$ couplings.

0 data tables match query

Search for Higgs boson pair production in the $\gamma\gamma WW^{*}$ channel using $pp$ collision data recorded at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 1007, 2018.
Inspire Record 1683431 DOI 10.17182/hepdata.83967

Searches for non-resonant and resonant Higgs boson pair production are performed in the $\gamma\gamma WW^{*}$ channel with the final state of $\gamma\gamma\ell\nu jj$ using 36.1 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence-level observed upper limit of 7.7 pb is set on the cross section for non-resonant production, while the expected limit is 5.4 pb. A search for a narrow-width resonance $X$ decaying to a pair of Standard Model Higgs bosons $HH$ is performed with the same set of data, and the observed upper limits on $\sigma(pp \rightarrow X) \times B(X \rightarrow HH)$ range between 40.0 pb and 6.1 pb for masses of the resonance between 260 GeV and 500 GeV, while the expected limits range between 17.6 pb and 4.4 pb. When deriving the limits above, the Standard Model branching ratios of the $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{*}$ are assumed.

0 data tables match query