Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb--Pb Collisions at $\sqrt{s_{\rm{NN}}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 720 (2013) 52-62, 2013.
Inspire Record 1127497 DOI 10.17182/hepdata.59944

The inclusive transverse momentum ($p_{\rm T}$) distributions of primary charged particles are measured in the pseudo-rapidity range $|\eta|<0.8$ as a function of event centrality in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=2.76$ TeV with ALICE at the LHC. The data are presented in the $p_{\rm T}$ range $0.15<p_{\rm T}<50$ GeV/$c$ for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor $R_{\rm{AA}}$ using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-$p_{\rm T}$ particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with $R_{\rm{AA}}\approx0.13$ at $p_{\rm T}=6$-7 GeV/$c$. Above $p_{\rm T}=7$ GeV/$c$, there is a significant rise in the nuclear modification factor, which reaches $R_{\rm{AA}} \approx0.4$ for $p_{\rm T}>30$ GeV/$c$. In peripheral collisions (70-80%), the suppression is weaker with $R_{\rm{AA}} \approx 0.7$ almost independently of $p_{\rm T}$. The measured nuclear modification factors are compared to other measurements and model calculations.

1 data table match query

Nuclear Modification Factor RAA in the centrality interval 50-60%.


Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sqrt(s_{(NN)}) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Rev.Lett. 107 (2011) 032301, 2011.
Inspire Record 900651 DOI 10.17182/hepdata.62026

We report on the first measurement of the triangular $v_3$, quadrangular $v_4$, and pentagonal $v_5$ charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow $v_2$ and $v_3$ have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.

1 data table match query

v2{SP,Deltaeta=1.0} (blue open circles).


Measurement of charged jet suppression n Pb-Pb collisions at sqrt(sNN)=2.76TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
JHEP 03 (2014) 013, 2014.
Inspire Record 1263194 DOI 10.17182/hepdata.62723

A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.

1 data table match query

Nuclear modification factor, constructed as the ratio of jet pT spectra in central and peripheral collisions normalized by the nuclear overlap functions, for charged jets with either R = 0.2 or R = 0.3 and a leading charged particle with pT > 5 GeV. Central collisions are defined to have centrality 10-30% and peripheral collisions are defined to have centrality 50-80%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.


Event shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at $\sqrt{s_\rm{NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 93 (2016) 034916, 2016.
Inspire Record 1384270 DOI 10.17182/hepdata.72304

We report on results obtained with the Event Shape Engineering technique applied to Pb-Pb collisions at $\sqrt{s_\rm{NN}}=2.76$ TeV. By selecting events in the same centrality interval, but with very different average flow, different initial state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient $v_2$ to be almost independent of transverse momentum $p_\rm{T}$, as expected if this effect is due to fluctuations in the initial geometry of the system. Charged hadron, pion, kaon, and proton transverse momentum distributions are found to be harder in events with higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.

1 data table match query

Ratio of $\rm v_{2}\{{SP}\}$ in the $\rm small-q_{2}^{TPC}$ to unbiased sample, centrality 40-50%.


Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the LHC

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 90 (2014) 054901, 2014.
Inspire Record 1300038 DOI 10.17182/hepdata.65710

Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a $|\Delta \eta|$ gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of $v_{2}\{4\}$ to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find $v_{2}\{4\} \simeq v_{2}\{6\}\neq 0$ which is indicative of a Bessel-Gaussian function for the $v_{2}$ distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a $|\Delta\eta| > 1.4$ gap is placed.

1 data table match query

No description provided.


Version 2
Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 97 (2018) 024906, 2018.
Inspire Record 1621591 DOI 10.17182/hepdata.78924

The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the LHC. The results are reported in terms of multiparticle correlation observables dubbed Symmetric Cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular $v_4$ and pentagonal $v_5$ flow) and the lower order harmonics (the elliptic $v_2$ and triangular $v_3$ flow) is presented. The transverse momentum dependence of correlations between $v_3$ and $v_2$ and between $v_4$ and $v_2$ is also reported. The results are compared to calculations from viscous hydrodynamics and A Multi-Phase Transport ({AMPT}) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditions and the temperature dependence of the ratio of shear viscosity to entropy density ($\eta/s$). A small average value of $\eta/s$ is favored independent of the specific choice of initial conditions in the models. The calculations with the AMPT initial conditions yield results closest to the measurements. Correlations between the magnitudes of $v_2$, $v_3$ and $v_4$ show moderate $p_{\rm T}$ dependence in mid-central collisions. Together with existing measurements of individual flow harmonics, the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.

2 data tables match query

Centrality dependence of observables NSC(3,2) in Pb-Pb collisions at 2.76 TeV.

Centrality dependence of observables NSC(3,2) in Pb-Pb collisions at 2.76 TeV.


Jet-hadron correlations measured relative to the second order event plane in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 101 (2020) 064901, 2020.
Inspire Record 1762358 DOI 10.17182/hepdata.93229

The Quark Gluon Plasma (QGP) produced in ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20 < $p_{\rm{T}}^{\rm{jet}}$ < 40 GeV/$c$ as a function of the associated particle momentum. The reaction plane fit (RPF) method is used in this analysis to remove the flow modulated background. The analysis of angular correlations for different orientations of the jet relative to the second order event plane allows for the study of the path length dependence of medium modifications to jets. We present the dependence of azimuthal angular correlations of charged hadrons with respect to the angle of the axis of a reconstructed jet relative to the event plane in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. The dependence of particle yields associated with jets on the angle of the jet with respect to the event plane is presented. Correlations at different angles relative to the event plane are compared through ratios and differences of the yield. No dependence of the results on the angle of the jet with respect to the event plane is observed within uncertainties, which is consistent with no significant path length dependence of the medium modifications for this observable.

1 data table match query

Correlation functions in signal plus background region for $2.0<p_{T}^{assoc}<3.0$ GeV/$c$ for $20<p_T^{jet}<40$ GeV/$c$ full jets of 30-50% centrality in Pb-Pb collisions


Higher-order correlations between different moments of two flow amplitudes in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 108 (2023) 055203, 2023.
Inspire Record 2654313 DOI 10.17182/hepdata.144824

The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector at the CERN Large Hadron Collider. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parametrizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions.

1 data table match query

Centrality dependence of ${\rm SC}(3,4)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.


Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at sqrt(s_NN)=2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 2982, 2014.
Inspire Record 1296260 DOI 10.17182/hepdata.66180

The integrated elliptic flow of charged particles produced in Pb+Pb collisions at sqrt(s_NN)=2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v_2, was measured in the pseudorapidity range |eta| <= 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v_2 integrated over pT, a 1 mu b-1 data sample without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v_2 is compared to other measurements obtained with higher pT thresholds. A weak pseudorapidity dependence of the integrated elliptic flow is observed for central collisions, and a small decrease when moving away from mid-rapidity is observed only in peripheral collisions. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.

1 data table match query

Elliptic flow $v_{2}$ integrated over transverse momentum $p_{T}>p_{T,0}$ as a function of $p_{T,0}$ for 60-70% centrality interval, obtained with different charged-particle reconstruction methods: the tracklet (TKT) method with $p_{T,0}=0.07$ GeV, the pixel track (PXT) method with $p_{T,0} \geq 0.1$ GeV and the ID track (IDT) method with $p_{T,0}=0.5$ GeV. Error bars indicate statistical and systematic uncertainties added in quadrature.


Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 739 (2014) 320-342, 2014.
Inspire Record 1300152 DOI 10.17182/hepdata.64272

Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.

1 data table match query

D(z) distribution for R=0.2 jets.