$ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032005, 2018.
Inspire Record 1625109 DOI 10.17182/hepdata.82224

Measurements of $ZZ$ production in the $\ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 $\mathrm{fb}^{-1}$ of collisions collected by the ATLAS experiment in 2015 and 2016. Here $\ell$ and $\ell'$ stand for electrons or muons. Integrated and differential $ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross sections with $Z \to \ell^+\ell^-$ candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all Standard-Model decays of $Z$ bosons with mass between 66 GeV and 116 GeV, resulting in a value of $17.3 \pm 0.9$ [$\pm 0.6$ (stat.) $\pm 0.5$ (syst.) $\pm 0.6$ (lumi.)] pb. The measurements are found to be in good agreement with the Standard-Model predictions. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading $Z$-boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

1 data table match query

Observed data events as function of the transverse momentum of the 1. lepton.


A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Nature 607 (2022) 52-59, 2022.
Inspire Record 2104706 DOI 10.17182/hepdata.130266

The Standard Model of particle physics describes the known fundamental particles and forces that make up our universe, with the exception of gravity. One of the central features of the Standard Model is a field that permeates all of space and interacts with fundamental particles. The quantum excitation of this field, known as Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the Standard Model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, allowing much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and $W$ and $Z$ bosons -- the carriers of the strong, electromagnetic, and weak forces -- are studied in detail. Interactions with three third-generation matter particles (bottom ($b$) and top ($t$) quarks, and tau leptons ($\tau$)) are well measured and indications of interactions with a second-generation particle (muons, $\mu$) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the Standard Model.

1 data table match query

Best-fit values and uncertainties for the cross sections in each measurement region, normalized to the SM predictions for the various parameters. The measurements assume SM branching fractions for all measured decays. The black error bars, blue boxes and yellow boxes show the total, systematic, and statistical uncertainties in the measurements, respectively. The gray bands show the theory uncertainties on the predictions. The level of compatibility between the combined measurement and the SM prediction corresponds to a $p$-value of 94%.


Version 2
A measurement of soft-drop jet observables in $pp$ collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052007, 2020.
Inspire Record 1772062 DOI 10.17182/hepdata.92073

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.

2 data tables match query

Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.


Version 2
A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 092001, 2018.
Inspire Record 1637587 DOI 10.17182/hepdata.79953

Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log$_{10}\rho^2$, where $\rho$ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

2 data tables match query

Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.


A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 200, 2023.
Inspire Record 2176695 DOI 10.17182/hepdata.129285

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

1 data table match query

Comparison between data and SM predictions for the meff distributions in the boosted SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.


A search for new phenomena in pp collisions at sqrt(s) = 13 TeV in final states with missing transverse momentum and at least one jet using the alphaT variable

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 294, 2017.
Inspire Record 1495423 DOI 10.17182/hepdata.77606

A search for new phenomena is performed in final states containing one or more jets and an imbalance in transverse momentum in pp collisions at a centre-of-mass energy of 13 TeV. The analysed data sample, recorded with the CMS detector at the CERN LHC, corresponds to an integrated luminosity of 2.3 inverse femtobarns. Several kinematic variables are employed to suppress the dominant background, multijet production, as well as to discriminate between other standard model and new physics processes. The search provides sensitivity to a broad range of new-physics models that yield a stable weakly interacting massive particle. The number of observed candidate events is found to agree with the expected contributions from standard model processes, and the result is interpreted in the mass parameter space of fourteen simplified supersymmetric models that assume the pair production of gluinos or squarks and a range of decay modes. For models that assume gluino pair production, masses up to 1575 and 975 GeV are excluded for gluinos and neutralinos, respectively. For models involving the pair production of top squarks and compressed mass spectra, top squark masses up to 400 GeV are excluded.

1 data table match query

Covariance matrix for the SM background estimates obtained using the simplified binning scheme, determined from a simultaneous fit to data in the control regions only (CR-only fit). The uncertainties in the background estimates are correlated in such a way that the covariance is typically positive. Small positive values, as well as the few negative values, are not shown.


A statistical combination of ATLAS Run 2 searches for charginos and neutralinos at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2024-018, 2024.
Inspire Record 2758009 DOI 10.17182/hepdata.149530

Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.

1 data table match query

Observed 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.


ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 510, 2015.
Inspire Record 1380183 DOI 10.17182/hepdata.69366

This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb$^{-1}$ of collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV, although in some case an additional 4.7 fb$^{-1}$ of collision data at $\sqrt{s}$ = 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.

1 data table match query

Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=350 GeV and m(chi1)=20 GeV (top plot). This table is for the t1L/t0L expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d14 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d15.


Angular analysis of the $B^{+}\rightarrow K^{\ast+}\mu^{+}\mu^{-}$ decay

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Phys.Rev.Lett. 126 (2021) 161802, 2021.
Inspire Record 1838196 DOI 10.17182/hepdata.105273

We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.

2 data tables match query

The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.

Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 15.00 < q2 < 19.00 GeV2/c4


Angular analysis of the $B^{0}\rightarrow K^{*0}\mu^{+}\mu^{-}$ decay

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 02 (2016) 104, 2016.
Inspire Record 1409497 DOI 10.17182/hepdata.74247

An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1<q^{2}<6.0\mathrm{\,Ge\kern -0.1em V}^{2}/c^{4}$, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of $C\!P$-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.

1 data table match query

Likelihood correlation matrix $4.0 <q^2< 6.0~{\rm GeV}^2/c^4$.


Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV in PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 776 (2018) 195-216, 2018.
Inspire Record 1511868 DOI 10.17182/hepdata.77603

The Fourier coefficients v[2] and v[3] characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at sqrt(s[NN]) = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, 1 < pT < 100 GeV. The analysis focuses on pT > 10 GeV range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60% most central events. The v[2] coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to the initial-state fluctuations. The values of both methods remain positive up to pT of about 60-80 GeV, in all examined centrality classes. The v[3] coefficient, only measured with the scalar product method, tends to zero for pT greater than or equal to 20 GeV. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations.

1 data table match query

The $v_{2}^{high}$ as a function of $v_{2}^{low}$ results from 4-particle cumulant method in PbPb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. Only statistical uncertainties are shown.


Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at $\sqrt{s}= $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 566, 2018.
Inspire Record 1643640 DOI 10.17182/hepdata.86140

Azimuthal correlations between the two jets with the largest transverse momenta $ {p_{\mathrm{T}}} $ in inclusive 2-, 3-, and 4-jet events are presented for several regions of the leading jet $ {p_{\mathrm{T}}} $ up to 4 TeV. For 3- and 4-jet scenarios, measurements of the minimum azimuthal angles between any two of the three or four leading $ {p_{\mathrm{T}}} $ jets are also presented. The analysis is based on data from proton-proton collisions collected by the CMS Collaboration at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Calculations based on leading-order matrix elements supplemented with parton showering and hadronization do not fully describe the data, so next-to-leading-order calculations matched with parton shower and hadronization models are needed to better describe the measured distributions. Furthermore, we show that azimuthal jet correlations are sensitive to details of the parton showering, hadronization, and multiparton interactions. A next-to-leading-order calculation matched with parton showers in the MC@NLO method, as implemented in HERWIG 7, gives a better overall description of the measurements than the POWHEG method.

1 data table match query

Normalized inclusive 4-jet cross section differential in $\Delta\phi_{1,2}$ for $600 < p_{T}^{max} < 700$ GeV


Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 773, 2019.
Inspire Record 1719955 DOI 10.17182/hepdata.89878

A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, $\Delta\phi_{12}$ , is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9 fb$^{-1}$ are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177$^\circ$ $<$ $\Delta\phi_{12}$ $<$ 180$^\circ$. The 2- and 3-jet measurements are not simultaneously described by any of models.

1 data table match query

No description provided.


Centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 748 (2015) 392-413, 2015.
Inspire Record 1334140 DOI 10.17182/hepdata.67349

Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.

1 data table match query

Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).


Charged particle multiplicities in pp interactions at sqrt(s) = 0.9, 2.36, and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 01 (2011) 079, 2011.
Inspire Record 879315 DOI 10.17182/hepdata.57909

Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta|<2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt(s) = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt(s) is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.

1 data table match query

Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 and PT > 500 MeV at a centre-of-mass energy of 7000 GeV.


Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

1 data table match query

Charged-hadron spectrum in the centrality interval 10-20% for Xe+Xe, divided by &#9001;TAA&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.


Charged-particle angular correlations in XeXe collisions at $\sqrt{s_{_\mathrm{NN}}}=$ 5.44 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 100 (2019) 044902, 2019.
Inspire Record 1716441 DOI 10.17182/hepdata.88276

Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon pair of $ \sqrt{s_{_\mathrm{NN}}} =$ 5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total integrated luminosity of 3.42 $\mu$b$^{-1}$. The collective motion of the system formed in the collision is parameterized by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients $v_{2}$, $v_{3}$, and $v_{4}$ are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within a hydrodynamic picture, these methods have different sensitivities to non-collective and fluctuation effects. The dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are also compared to the experimental results. The observed angular correlations provide new constraints on the hydrodynamic description of heavy ion collisions.

1 data table match query

The $v_4$ coefficients based on the two-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.


Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

1 data table match query

Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.


Combination and summary of ATLAS dark matter searches interpreted in a 2HDM with a pseudo-scalar mediator using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-088, 2023.
Inspire Record 2664553 DOI 10.17182/hepdata.140529

Results from a wide range of searches targeting different experimental signatures with and without missing transverse momentum ($E_{\mathrm{T}}^{\mathrm{miss}}$) are used to constrain a Two-Higgs-Doublet Model (2HDM) with an additional pseudo-scalar mediating the interaction between ordinary and dark matter (2HDM+$a$). The analyses use up to 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015-2018. The results from three of the most sensitive searches are combined statistically. These searches target signatures with large $E_{\mathrm{T}}^{\mathrm{miss}}$ and a leptonically decaying $Z$ boson; large $E_{\mathrm{T}}^{\mathrm{miss}}$ and a Higgs boson decaying to bottom quarks; and production of charged Higgs bosons in final states with top and bottom quarks, respectively. Constraints are derived for several common as well as new benchmark scenarios within the 2HDM+$a$.

4 data tables match query

Observed combination limits at 95% CL in the $(m_{A},tan\beta)$ plane under the assumption of $sin\theta$ = 0.35.

Expected combination limits at 95% CL in the $(m_{A},tan\beta)$ plane under the assumption of $sin\theta$ = 0.35.

1 sigma band of expected combination limits at 95% CL in the $(m_{A},tan\beta)$ plane under the assumption of $sin\theta$ = 0.35.

More…

Combination of the searches for pair-produced vector-like partners of the third-generation quarks at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 211801, 2018.
Inspire Record 1685421 DOI 10.17182/hepdata.83541

A combination of the searches for pair-produced vector-like partners of the top and bottom quarks in various decay channels ($T$$\rightarrow$$Zt/Wb/Ht$, $B$$\rightarrow$$Zb/Wt/Hb$) is performed using 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The observed data are found to be in good agreement with the Standard Model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross-section for a range of vector-like quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vector-like quarks decay to Standard Model particles. A singlet $T$ is excluded for masses below 1.31 TeV and a singlet $B$ is excluded for masses below 1.22 TeV. Assuming a weak isospin $(T,B)$ doublet and $|V_{Tb}| \ll |V_{tB}|$, $T$ and $B$ masses below 1.37 TeV are excluded.

1 data table match query

Expected and observed 95% upper limits on the vector-like bottom quark pair-production signal strength (i.e. the ratio sigma_exclusion/sigma_VLQ) as a function of the branching ratio for a vector-like quark mass of 1400 GeV, asumming that the vector-like quarks exclusively decay to SM particles (and third generation quarks). If interpreting these results in models with decays to non-Standard-Model particles, one must check that the additional decays will not end up in any control regions of the relevant analyses.


Combined Measurement and QCD Analysis of the Inclusive ep Scattering Cross Sections at HERA

The H1 & ZEUS collaborations Aaron, F.D. ; Abramowicz, H. ; Abt, I. ; et al.
JHEP 01 (2010) 109, 2010.
Inspire Record 836107 DOI 10.17182/hepdata.58304

A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised ep scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

2 data tables match query

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=12. GeV**2.

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=22. GeV**2.


Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 81 (2021) 970, 2021.
Inspire Record 1893826 DOI 10.17182/hepdata.116374

A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325 GeV for a massless neutralino, and a neutralino mass up to 700 GeV for a top squark mass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV.

1 data table match query

Leading lepton ${p}_{T}$ distribution of data and MC events in the signal region with the signal stacked on top of the background prediction for a mass hypothesis of ${m}_{stop} = 225GeV$ and ${m}_{LSP} = 50 GeV$. Events from ttW, ttZ, DY, non-prompt leptons, and diboson processes are grouped into the 'Other' category. The lower panel contains the data-to-prediction ratio. The uncertainty band includes statistical, background normalization and all systematic uncertainties.


Comparison of large-angle production of charged pions with incident protons on cylindrical long and short targets

The HARP collaboration Apollonio, M. ; Artamonov, A. ; Bagulya, A. ; et al.
Phys.Rev.C 80 (2009) 065204, 2009.
Inspire Record 830148 DOI 10.17182/hepdata.54193

The HARP collaboration has presented measurements of the double-differential pi+/pi- production cross-section in the range of momentum 100 MeV/c <= p 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad with proton beams hitting thin nuclear targets. In many applications the extrapolation to long targets is necessary. In this paper the analysis of data taken with long (one interaction length) solid cylindrical targets made of carbon, tantalum and lead is presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams of protons with momenta 5 GeV/c, 8 GeV/c and 12 GeV/c. The tracking and identification of the produced particles were performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident protons were identified by an elaborate system of beam detectors. Results are obtained for the double-differential yields per target nucleon d2 sigma / dp dtheta. The measurements are compared with predictions of the MARS and GEANT4 Monte Carlo simulations.

1 data table match query

Differential cross section for PI+ production with a TA target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.


Version 2
Comprehensive measurements of $t$-channel single top-quark production cross sections at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112006, 2014.
Inspire Record 1303905 DOI 10.17182/hepdata.64385

This article presents measurements of the $t$-channel single top-quark ($t$) and top-antiquark ($\bar{t}$) total production cross sections $\sigma(tq)$ and $\sigma(\bar{t}q)$, their ratio $R_{t}=\sigma(tq)/\sigma(\bar{t}q)$, and a measurement of the inclusive production cross section $\sigma(tq + \bar{t}q)$ in proton--proton collisions at $\sqrt{s} = 7$ TeV at the LHC. Differential cross sections for the $tq$ and $\bar{t}q$ processes are measured as a function of the transverse momentum and the absolute value of the rapidity of $t$ and $\bar{t}$, respectively. The analyzed data set was recorded with the ATLAS detector and corresponds to an integrated luminosity of 4.59 fb$^{-1}$. Selected events contain one charged lepton, large missing transverse momentum, and two or three jets. The cross sections are measured by performing a binned maximum-likelihood fit to the output distributions of neural networks. The resulting measurements are $\sigma(tq)= 46\pm 6\; \mathrm{pb}$, $\sigma(\bar{t}q)= 23 \pm 4\; \mathrm{pb}$, $R_{t}=2.04\pm 0.18$, and $\sigma(tq + \bar{t}q)= 68 \pm 8\; \mathrm{pb}$, consistent with the Standard Model expectation. The uncertainty on the measured cross sections is dominated by systematic uncertainties, while the uncertainty on $R_{t}$ is mainly statistical. Using the ratio of $\sigma(tq + \bar{t}q)$ to its theoretical prediction, and assuming that the top-quark-related CKM matrix elements obey the relation $|V_{tb}|\gg |V_{ts}|, |V_{td}|$, we determine $|V_{tb}|=1.02 \pm 0.07$.

1 data table match query

Detailed list of the contribution of each source of uncertainty to the total relative uncertainty on the measured $\dfrac{\mathrm{d}\sigma}{\mathrm{d}|y(t)|}$ distribution given in percent for each bin. The list includes only those uncertainties that contribute with more than $1\%$. The following uncertainties contribute to the total uncertainty with less than $1\%$ to each bin content$:$ JES detector, JES statistical, JES physics modeling, JES mixed detector and modeling, JES close-by jets, JES pileup, JES flavor composition, JES flavor response, jet-vertex fraction, $b/\bar{b}$ acceptance, $E_{\mathrm{T}}^{\mathrm{miss}}$ modeling, $W+$ jets shape variation, $t \bar{t}$ generator, $t \bar{t}$ ISR/FSR, and unfolding. In cases when the uncertainty is report to be "$<1\%$" in the table of the paper the uncertainty is approximated by a value of $0.5\%$.


Version 2
Constraining gluon distributions in nuclei using dijets in proton-proton and proton-lead collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 062002, 2018.
Inspire Record 1672941 DOI 10.17182/hepdata.83198

The pseudorapidity distributions of dijets as a function of their average transverse momentum ($p_\mathrm{T}^\text{ave}$) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all $p_\mathrm{T}^\text{ave}$ intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken $x$ in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.

2 data tables match query

The measured pp dijet pseudorapidity spectra, shifted to match the $\eta_{\mathrm{dijet}}$ range of the pPb collisions, for $55 < p_{\mathrm{T}}^{\mathrm{ave}} < 75$ GeV.

The measured pp dijet pseudorapidity spectra, shifted to match the $\eta_{\mathrm{dijet}}$ range of the pPb collisions, for $55 < p_{\mathrm{T}}^{\mathrm{ave}} < 75$ GeV.


Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 137745, 2023.
Inspire Record 2175556 DOI 10.17182/hepdata.135471

Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b} \gamma \gamma$ decay channels with single-Higgs boson analyses targeting the $\gamma \gamma$, $ZZ^*$, $WW^*$, $\tau^+ \tau^-$ and $b\bar{b}$ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton$-$proton collisions at $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 126$-$139 fb$^{-1}$. The combination of the double-Higgs analyses sets an upper limit of $\mu_{HH} < 2.4$ at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling ($\lambda_{HHH}$), values outside the interval $-0.4< \kappa_{\lambda}=(\lambda_{HHH}/\lambda_{HHH}^{\textrm{SM}})< 6.3$ are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL.

1 data table match query

Expected constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs analyses. The solid lines show the 68% CL contours.


Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-008, 2024.
Inspire Record 2764172 DOI 10.17182/hepdata.146013

A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

30 data tables match query

Expected profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Observed profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Expected profiled likelihood on $f_{\Lambda1}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

More…

Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

1 data table match query

Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.


Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 97 (2018) 044912, 2018.
Inspire Record 1614482 DOI 10.17182/hepdata.82637

Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum ($p_\mathrm{t}$) difference, and the $p_\mathrm{t}$ average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a $v_2$-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the $v_2$-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.

1 data table match query

Three-particle correlation with respect to the 3rd order event plane in PbPb collisions.


Correlated long-range mixed-harmonic fluctuations measured in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 789 (2019) 444-471, 2019.
Inspire Record 1681154 DOI 10.17182/hepdata.83969

Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.

1 data table match query

The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV


Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: a probe of the heavy-ion initial state and nuclear deformation

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.C 107 (2023) 054910, 2023.
Inspire Record 2075412 DOI 10.17182/hepdata.139082

The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.

1 data table match query

$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality


Correlations between jets and charged particles in PbPb and pp collisions at sqrt(s[NN])= 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 02 (2016) 156, 2016.
Inspire Record 1412059 DOI 10.17182/hepdata.72644

The quark-gluon plasma is studied via medium-induced changes to correlations between jets and charged particles in PbPb collisions compared to pp reference data. This analysis uses data sets from PbPb and pp collisions with integrated luminosities of 166 inverse microbarns and 5.3 inverse picobarns, respectively, collected at sqrt(s[NN]) = 2.76 TeV. The angular distributions of charged particles are studied as a function of relative pseudorapidity (Delta eta) and relative azimuthal angle (Delta phi) with respect to reconstructed jet directions. Charged particles are correlated with all jets with transverse momentum (pt) above 120 GeV, and with the leading and subleading jets (the highest and second-highest in pt, respectively) in a selection of back-to-back dijet events. Modifications in PbPb data relative to pp reference data are characterized as a function of PbPb collision centrality and charged particle pt. A centrality-dependent excess of low-pt particles is present for all jets studied, and is most pronounced in the most central events. This excess of low-pt particles follows a Gaussian-like distribution around the jet axis, and extends to large relative angles of Delta eta approximately 1 and Delta phi approximately 1.

1 data table match query

Symmetrized dEta distributions (projected over |dPhi|<1) of background-subtracted particle yields correlated to PbPb and pp subleading jets with pT > 50 GeV for tracks with 1 < pT < GeV in 30-50% central events.


Cross-section measurements for the production of a $Z$ boson in association with high-transverse-momentum jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 080, 2023.
Inspire Record 2077570 DOI 10.17182/hepdata.114865

Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.

1 data table match query

Systematic uncertainties for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.


Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 11 (2016) 055, 2016.
Inspire Record 1485701 DOI 10.17182/hepdata.77493

Interactions between jets and the quark-gluon plasma produced in heavy ion collisions are studied via the angular distributions of summed charged-particle transverse momenta (pt) with respect to both the leading and subleading jet axes in high-pt dijet events. The contributions of charged particles in different momentum ranges to the overall event pt balance are decomposed into short-range jet peaks and a long-range azimuthal asymmetry in charged-particle pt. The results for PbPb collisions are compared to those in pp collisions using data collected in 2011 and 2013, at collision energy sqrt(s[NN]) = 2.76 TeV with integrated luminosities of 166 inverse microbarns and 5.3 inverse picobarns, respectively, by the CMS experiment at the LHC. Measurements are presented as functions of PbPb collision centrality, charged-particle pt, relative azimuth, and radial distance from the jet axis for balanced and unbalanced dijets.

1 data table match query

Jet peak (long-range subtracted) distribution of transverse momentum (P = 1/N dSum(pT)/dPhi) for subleading jets in pp data, projected into relative azimuth, for balanced dijets with Aj < 0.22.


Deep inelastic cross-section measurements at large y with the ZEUS detector at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 90 (2014) 072002, 2014.
Inspire Record 1292476 DOI 10.17182/hepdata.64778

The reduced cross sections for $e^{+}p$ deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, $318$, $251$ and $225$ GeV. The cross sections, measured double differentially in Bjorken $x$ and the virtuality, $Q^2$, were obtained in the region $0.13\ \leq\ y\ \leq\ 0.75$, where $y$ denotes the inelasticity and $5\ \leq\ Q^2\ \leq\ 110$ GeV$^2$. The proton structure functions $F_2$ and $F_L$ were extracted from the measured cross sections.

1 data table match query

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 251 GeV and Q^2=7 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.


Deep inelastic inclusive and diffractive scattering at $Q^2$ values from 25 to 320 GeV$^2$ with the ZEUS forward plug calorimeter

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 800 (2008) 1-76, 2008.
Inspire Record 779854 DOI 10.17182/hepdata.11639

Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.

1 data table match query

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 55 GeV**2.


Deep inelastic scattering with leading protons or large rapidity gaps at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 816 (2009) 1-61, 2009.
Inspire Record 804915 DOI 10.17182/hepdata.52860

The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40&lt;W&lt;240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.

2 data tables match query

The reduced diffractive cross sections obtained from the LPS data as a function of X(NAME=POMERON) for Q**2 = 3.9 GeV**2 and ABS(T) = 0.19 to 0.55 GeV**2 for M(X) values of 3, 7, 15 and 30 GeV.

The reduced diffractive cross sections obtained from the LRG data as a function of X(NAME=POMERON) for Q**2 = 22 GeV**2 and M(X) values of 3, 6, 11, 19 and 32 GeV.


Dependence of inclusive jet production on the anti-$k_\mathrm{T}$ distance parameter in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2020) 082, 2020.
Inspire Record 1795080 DOI 10.17182/hepdata.95241

The dependence of inclusive jet production in proton-proton collisions with a center-of-mass energy of 13 TeV on the distance parameter $R$ of the anti-$k_\mathrm{T}$ algorithm is studied using data corresponding to integrated luminosities up to 35.9 fb$^{-1}$ collected by the CMS experiment in 2016. The ratios of the inclusive cross sections as functions of transverse momentum $p_\mathrm{T}$ and rapidity $y$, for $R$ in the range 0.1 to 1.2 to those using $R = $ 0.4 are presented in the region 84 $\lt$ $p_\mathrm{T}$ $\lt$ 1588 GeV and $|y|$ $\lt$ 2.0. The results are compared to calculations at leading and next-to-leading order in the strong coupling constant using different parton shower models. The variation of the ratio of cross sections with $R$ is well described by calculations including a parton shower model, but not by a leading-order quantum chromodynamics calculation including nonperturbative effects. The agreement between the data and the theoretical predictions for the ratios of cross sections is significantly improved when next-to-leading order calculations with nonperturbative effects are used.

1 data table match query

Ratio of differential cross section of AK6 jets with respect to AK4 jets a function of jet PT in the rapidity range 0.5<|y|<1.0. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.


Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 04 (2023) 080, 2023.
Inspire Record 2077575 DOI 10.17182/hepdata.115142

Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.

2 data tables match query

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> NLEP = 0, E or MU, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, R = 1.0, 350 GeV &lt; PT &lt; 3000 GeV, ABS ETA &lt; 2, M &gt; 50 GeV <li> NJETS &gt;= 1, R = 1.0, 500 GeV &lt; PT &lt; 3000 GeV, ABS ETA &lt; 2, M &gt; 50 GeV <li> T1, MIN ( ABS ( M - 172.5 GeV ) ), candidate JETS with PT &gt; 500 GeV <li> T2, MIN ( ABS ( M - 172.5 GeV ) ), remaining candidate JETS with PT &gt; 350 GeV <li> T1 and T2, 122.5 GeV &lt; M &lt; 222.5 GeV, ghost-matched B-HAD with PT &gt; 5 GeV </ul><br/> <i>Parton level:</i> <ul> <li> PT_T1 &gt; 500 GeV, PT_T2 &gt; 350 GeV </ul><br/> <b>Particle level:</b><br/> <u>1D:</u><br/> Spectra: <ul><br/> <li>SIG (<a href="115142?table=Table 1">Table 1</a>) <li>DSIG/DPT_TOP (<a href="115142?table=Table 2">Table 2</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 3">Table 3</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 4">Table 4</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 5">Table 5</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 6">Table 6</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 7">Table 7</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 8">Table 8</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 9">Table 9</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 10">Table 10</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 11">Table 11</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 12">Table 12</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 13">Table 13</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 14">Table 14</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 15">Table 15</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 16">Table 16</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 74">Table 74</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 75">Table 75</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 76">Table 76</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 77">Table 77</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 78">Table 78</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 79">Table 79</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 80">Table 80</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 81">Table 81</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 82">Table 82</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 83">Table 83</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 84">Table 84</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 85">Table 85</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 86">Table 86</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 87">Table 87</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 88">Table 88</a>) </ul><br/> Covariances: <ul><br/> <li>DSIG/DPT_TOP (<a href="115142?table=Table 291">Table 291</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 292">Table 292</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 293">Table 293</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 294">Table 294</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 295">Table 295</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 296">Table 296</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 297">Table 297</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 298">Table 298</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 299">Table 299</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 300">Table 300</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 301">Table 301</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 302">Table 302</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 303">Table 303</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 304">Table 304</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 305">Table 305</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 471">Table 471</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 472">Table 472</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 473">Table 473</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 474">Table 474</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 475">Table 475</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 476">Table 476</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 477">Table 477</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 478">Table 478</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 479">Table 479</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 480">Table 480</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 481">Table 481</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 482">Table 482</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 483">Table 483</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 484">Table 484</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 485">Table 485</a>) </ul><br/> <u>2D:</u><br/> Spectra: <ul><br/> <li>D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 17">Table 17</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 18">Table 18</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 19">Table 19</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 20">Table 20</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 21">Table 21</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 22">Table 22</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 23">Table 23</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 24">Table 24</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 25">Table 25</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 26">Table 26</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 27">Table 27</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 28">Table 28</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 29">Table 29</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 30">Table 30</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 31">Table 31</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 32">Table 32</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 33">Table 33</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 34">Table 34</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 35">Table 35</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 36">Table 36</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 37">Table 37</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 38">Table 38</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 39">Table 39</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 40">Table 40</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 41">Table 41</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 42">Table 42</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 43">Table 43</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 44">Table 44</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 45">Table 45</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 46">Table 46</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 47">Table 47</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 48">Table 48</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 49">Table 49</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 50">Table 50</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 51">Table 51</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 52">Table 52</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 53">Table 53</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 54">Table 54</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 55">Table 55</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 56">Table 56</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 57">Table 57</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 58">Table 58</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 59">Table 59</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 60">Table 60</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 61">Table 61</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 62">Table 62</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 63">Table 63</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 64">Table 64</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 89">Table 89</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 90">Table 90</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 91">Table 91</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 92">Table 92</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 93">Table 93</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 94">Table 94</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 95">Table 95</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 96">Table 96</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 97">Table 97</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 98">Table 98</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 99">Table 99</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 100">Table 100</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 101">Table 101</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 102">Table 102</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 103">Table 103</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 104">Table 104</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 105">Table 105</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 106">Table 106</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 107">Table 107</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 108">Table 108</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 109">Table 109</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 110">Table 110</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 111">Table 111</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 112">Table 112</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 113">Table 113</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 114">Table 114</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 115">Table 115</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 116">Table 116</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 117">Table 117</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 118">Table 118</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 119">Table 119</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 120">Table 120</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 121">Table 121</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 122">Table 122</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 123">Table 123</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 124">Table 124</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 125">Table 125</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 126">Table 126</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 127">Table 127</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 128">Table 128</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 129">Table 129</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 130">Table 130</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 131">Table 131</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 132">Table 132</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 133">Table 133</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 134">Table 134</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 135">Table 135</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 136">Table 136</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 306">Table 306</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 307">Table 307</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 308">Table 308</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 309">Table 309</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 310">Table 310</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 311">Table 311</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 312">Table 312</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 313">Table 313</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 314">Table 314</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 315">Table 315</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 316">Table 316</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 317">Table 317</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 318">Table 318</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 319">Table 319</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 320">Table 320</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 321">Table 321</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 322">Table 322</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 323">Table 323</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 324">Table 324</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 325">Table 325</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 326">Table 326</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 327">Table 327</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 328">Table 328</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 329">Table 329</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 330">Table 330</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 331">Table 331</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 332">Table 332</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 333">Table 333</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 334">Table 334</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 335">Table 335</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 336">Table 336</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 337">Table 337</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 338">Table 338</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 339">Table 339</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 340">Table 340</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 341">Table 341</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 342">Table 342</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 343">Table 343</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 344">Table 344</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 345">Table 345</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 346">Table 346</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 347">Table 347</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 348">Table 348</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 349">Table 349</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 350">Table 350</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 351">Table 351</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 352">Table 352</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 353">Table 353</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 354">Table 354</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 355">Table 355</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 356">Table 356</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 357">Table 357</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 358">Table 358</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 359">Table 359</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 360">Table 360</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 361">Table 361</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 362">Table 362</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 363">Table 363</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 364">Table 364</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 365">Table 365</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 366">Table 366</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 367">Table 367</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 368">Table 368</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 369">Table 369</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 370">Table 370</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 371">Table 371</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 372">Table 372</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 373">Table 373</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 374">Table 374</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 375">Table 375</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 376">Table 376</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 377">Table 377</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 378">Table 378</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 379">Table 379</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 380">Table 380</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 381">Table 381</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 382">Table 382</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 383">Table 383</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 384">Table 384</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 385">Table 385</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 386">Table 386</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 387">Table 387</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 388">Table 388</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 389">Table 389</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 390">Table 390</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 391">Table 391</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 392">Table 392</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 393">Table 393</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 394">Table 394</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 395">Table 395</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 396">Table 396</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 397">Table 397</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 398">Table 398</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 399">Table 399</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 400">Table 400</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 401">Table 401</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 402">Table 402</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 403">Table 403</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 404">Table 404</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 405">Table 405</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 406">Table 406</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 407">Table 407</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 408">Table 408</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 409">Table 409</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 410">Table 410</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 411">Table 411</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 412">Table 412</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 413">Table 413</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 414">Table 414</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 415">Table 415</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 416">Table 416</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 417">Table 417</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 418">Table 418</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 419">Table 419</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 420">Table 420</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 421">Table 421</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 422">Table 422</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 423">Table 423</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 424">Table 424</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 425">Table 425</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 486">Table 486</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 487">Table 487</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 488">Table 488</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 489">Table 489</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 490">Table 490</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 491">Table 491</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 492">Table 492</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 493">Table 493</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 494">Table 494</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 495">Table 495</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 496">Table 496</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 497">Table 497</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 498">Table 498</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 499">Table 499</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 500">Table 500</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 501">Table 501</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 502">Table 502</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 503">Table 503</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 504">Table 504</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 505">Table 505</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 506">Table 506</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 507">Table 507</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 508">Table 508</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 509">Table 509</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 510">Table 510</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 511">Table 511</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 512">Table 512</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 513">Table 513</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 514">Table 514</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 515">Table 515</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 516">Table 516</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 517">Table 517</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 518">Table 518</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 519">Table 519</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 520">Table 520</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 521">Table 521</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 522">Table 522</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 523">Table 523</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 524">Table 524</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 525">Table 525</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 526">Table 526</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 527">Table 527</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 528">Table 528</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 529">Table 529</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 530">Table 530</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 531">Table 531</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 532">Table 532</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 533">Table 533</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 534">Table 534</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 535">Table 535</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 536">Table 536</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 537">Table 537</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 538">Table 538</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 539">Table 539</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 540">Table 540</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 541">Table 541</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 542">Table 542</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 543">Table 543</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 544">Table 544</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 545">Table 545</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 546">Table 546</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 547">Table 547</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 548">Table 548</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 549">Table 549</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 550">Table 550</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 551">Table 551</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 552">Table 552</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 553">Table 553</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 554">Table 554</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 555">Table 555</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 556">Table 556</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 557">Table 557</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 558">Table 558</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 559">Table 559</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 560">Table 560</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 561">Table 561</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 562">Table 562</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 563">Table 563</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 564">Table 564</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 565">Table 565</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 566">Table 566</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 567">Table 567</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 568">Table 568</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 569">Table 569</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 570">Table 570</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 571">Table 571</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 572">Table 572</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 573">Table 573</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 574">Table 574</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 575">Table 575</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 576">Table 576</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 577">Table 577</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 578">Table 578</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 579">Table 579</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 580">Table 580</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 581">Table 581</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 582">Table 582</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 583">Table 583</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 584">Table 584</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 585">Table 585</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 586">Table 586</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 587">Table 587</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 588">Table 588</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 589">Table 589</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 590">Table 590</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 591">Table 591</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 592">Table 592</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 593">Table 593</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 594">Table 594</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 595">Table 595</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 596">Table 596</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 597">Table 597</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 598">Table 598</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 599">Table 599</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 600">Table 600</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 601">Table 601</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 602">Table 602</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 603">Table 603</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 604">Table 604</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 605">Table 605</a>) </ul><br/> <u>3D:</u><br/> Spectra: <ul><br/> <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 65">Table 65</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 66">Table 66</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 67">Table 67</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 68">Table 68</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 69">Table 69</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 70">Table 70</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 71">Table 71</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 72">Table 72</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 73">Table 73</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 137">Table 137</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 138">Table 138</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 139">Table 139</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 140">Table 140</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 141">Table 141</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 142">Table 142</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 143">Table 143</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 144">Table 144</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 145">Table 145</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 426">Table 426</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 427">Table 427</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 428">Table 428</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 429">Table 429</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 430">Table 430</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 431">Table 431</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 432">Table 432</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 433">Table 433</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 434">Table 434</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 435">Table 435</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 436">Table 436</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 437">Table 437</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 438">Table 438</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 439">Table 439</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 440">Table 440</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 441">Table 441</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 442">Table 442</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 443">Table 443</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 444">Table 444</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 445">Table 445</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 446">Table 446</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 447">Table 447</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 448">Table 448</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 449">Table 449</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 450">Table 450</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 451">Table 451</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 452">Table 452</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 453">Table 453</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 454">Table 454</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 455">Table 455</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 456">Table 456</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 457">Table 457</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 458">Table 458</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 459">Table 459</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 460">Table 460</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 461">Table 461</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 462">Table 462</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 463">Table 463</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 464">Table 464</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 465">Table 465</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 466">Table 466</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 467">Table 467</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 468">Table 468</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 469">Table 469</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 470">Table 470</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 606">Table 606</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 607">Table 607</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 608">Table 608</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 609">Table 609</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 610">Table 610</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 611">Table 611</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 612">Table 612</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 613">Table 613</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 614">Table 614</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 615">Table 615</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 616">Table 616</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 617">Table 617</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 618">Table 618</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 619">Table 619</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 620">Table 620</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 621">Table 621</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 622">Table 622</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 623">Table 623</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 624">Table 624</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 625">Table 625</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 626">Table 626</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 627">Table 627</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 628">Table 628</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 629">Table 629</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 630">Table 630</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 631">Table 631</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 632">Table 632</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 633">Table 633</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 634">Table 634</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 635">Table 635</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 636">Table 636</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 637">Table 637</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 638">Table 638</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 639">Table 639</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 640">Table 640</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 641">Table 641</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 642">Table 642</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 643">Table 643</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 644">Table 644</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 645">Table 645</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 646">Table 646</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 647">Table 647</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 648">Table 648</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 649">Table 649</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 650">Table 650</a>) </ul><br/> <b>Parton level:</b><br/> <u>1D:</u><br/> Spectra: <ul><br/> <li>SIG (<a href="115142?table=Table 146">Table 146</a>) <li>DSIG/DPT_TOP (<a href="115142?table=Table 147">Table 147</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 148">Table 148</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 149">Table 149</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 150">Table 150</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 151">Table 151</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 152">Table 152</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 153">Table 153</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 154">Table 154</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 155">Table 155</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 156">Table 156</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 157">Table 157</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 158">Table 158</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 159">Table 159</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 160">Table 160</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 161">Table 161</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 219">Table 219</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 220">Table 220</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 221">Table 221</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 222">Table 222</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 223">Table 223</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 224">Table 224</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 225">Table 225</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 226">Table 226</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 227">Table 227</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 228">Table 228</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 229">Table 229</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 230">Table 230</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 231">Table 231</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 232">Table 232</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 233">Table 233</a>) </ul><br/> Covariances: <ul><br/> <li>DSIG/DPT_TOP (<a href="115142?table=Table 651">Table 651</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 652">Table 652</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 653">Table 653</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 654">Table 654</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 655">Table 655</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 656">Table 656</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 657">Table 657</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 658">Table 658</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 659">Table 659</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 660">Table 660</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 661">Table 661</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 662">Table 662</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 663">Table 663</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 664">Table 664</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 665">Table 665</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 831">Table 831</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 832">Table 832</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 833">Table 833</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 834">Table 834</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 835">Table 835</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 836">Table 836</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 837">Table 837</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 838">Table 838</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 839">Table 839</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 840">Table 840</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 841">Table 841</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 842">Table 842</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 843">Table 843</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 844">Table 844</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 845">Table 845</a>) </ul><br/> <u>2D:</u><br/> Spectra: <ul><br/> <li>D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 162">Table 162</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 163">Table 163</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 164">Table 164</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 165">Table 165</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 166">Table 166</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 167">Table 167</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 168">Table 168</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 169">Table 169</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 170">Table 170</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 171">Table 171</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 172">Table 172</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 173">Table 173</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 174">Table 174</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 175">Table 175</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 176">Table 176</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 177">Table 177</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 178">Table 178</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 179">Table 179</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 180">Table 180</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 181">Table 181</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 182">Table 182</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 183">Table 183</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 184">Table 184</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 185">Table 185</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 186">Table 186</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 187">Table 187</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 188">Table 188</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 189">Table 189</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 190">Table 190</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 191">Table 191</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 192">Table 192</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 193">Table 193</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 194">Table 194</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 195">Table 195</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 196">Table 196</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 197">Table 197</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 198">Table 198</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 199">Table 199</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 200">Table 200</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 201">Table 201</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 202">Table 202</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 203">Table 203</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 204">Table 204</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 205">Table 205</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 206">Table 206</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 207">Table 207</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 208">Table 208</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 209">Table 209</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 234">Table 234</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 235">Table 235</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 236">Table 236</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 237">Table 237</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 238">Table 238</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 239">Table 239</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 240">Table 240</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 241">Table 241</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 242">Table 242</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 243">Table 243</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 244">Table 244</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 245">Table 245</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 246">Table 246</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 247">Table 247</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 248">Table 248</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 249">Table 249</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 250">Table 250</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 251">Table 251</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 252">Table 252</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 253">Table 253</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 254">Table 254</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 255">Table 255</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 256">Table 256</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 257">Table 257</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 258">Table 258</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 259">Table 259</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 260">Table 260</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 261">Table 261</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 262">Table 262</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 263">Table 263</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 264">Table 264</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 265">Table 265</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 266">Table 266</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 267">Table 267</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 268">Table 268</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 269">Table 269</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 270">Table 270</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 271">Table 271</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 272">Table 272</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 273">Table 273</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 274">Table 274</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 275">Table 275</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 276">Table 276</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 277">Table 277</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 278">Table 278</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 279">Table 279</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 280">Table 280</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 281">Table 281</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 666">Table 666</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 667">Table 667</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 668">Table 668</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 669">Table 669</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 670">Table 670</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 671">Table 671</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 672">Table 672</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 673">Table 673</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 674">Table 674</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 675">Table 675</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 676">Table 676</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 677">Table 677</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 678">Table 678</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 679">Table 679</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 680">Table 680</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 681">Table 681</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 682">Table 682</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 683">Table 683</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 684">Table 684</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 685">Table 685</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 686">Table 686</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 687">Table 687</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 688">Table 688</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 689">Table 689</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 690">Table 690</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 691">Table 691</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 692">Table 692</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 693">Table 693</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 694">Table 694</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 695">Table 695</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 696">Table 696</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 697">Table 697</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 698">Table 698</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 699">Table 699</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 700">Table 700</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 701">Table 701</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 702">Table 702</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 703">Table 703</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 704">Table 704</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 705">Table 705</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 706">Table 706</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 707">Table 707</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 708">Table 708</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 709">Table 709</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 710">Table 710</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 711">Table 711</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 712">Table 712</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 713">Table 713</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 714">Table 714</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 715">Table 715</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 716">Table 716</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 717">Table 717</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 718">Table 718</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 719">Table 719</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 720">Table 720</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 721">Table 721</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 722">Table 722</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 723">Table 723</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 724">Table 724</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 725">Table 725</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 726">Table 726</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 727">Table 727</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 728">Table 728</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 729">Table 729</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 730">Table 730</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 731">Table 731</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 732">Table 732</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 733">Table 733</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 734">Table 734</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 735">Table 735</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 736">Table 736</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 737">Table 737</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 738">Table 738</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 739">Table 739</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 740">Table 740</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 741">Table 741</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 742">Table 742</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 743">Table 743</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 744">Table 744</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 745">Table 745</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 746">Table 746</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 747">Table 747</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 748">Table 748</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 749">Table 749</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 750">Table 750</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 751">Table 751</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 752">Table 752</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 753">Table 753</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 754">Table 754</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 755">Table 755</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 756">Table 756</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 757">Table 757</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 758">Table 758</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 759">Table 759</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 760">Table 760</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 761">Table 761</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 762">Table 762</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 763">Table 763</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 764">Table 764</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 765">Table 765</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 766">Table 766</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 767">Table 767</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 768">Table 768</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 769">Table 769</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 770">Table 770</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 771">Table 771</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 772">Table 772</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 773">Table 773</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 774">Table 774</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 775">Table 775</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 776">Table 776</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 777">Table 777</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 778">Table 778</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 779">Table 779</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 780">Table 780</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 781">Table 781</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 782">Table 782</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 783">Table 783</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 784">Table 784</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 785">Table 785</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 846">Table 846</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 847">Table 847</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 848">Table 848</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 849">Table 849</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 850">Table 850</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 851">Table 851</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 852">Table 852</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 853">Table 853</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 854">Table 854</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 855">Table 855</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 856">Table 856</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 857">Table 857</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 858">Table 858</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 859">Table 859</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 860">Table 860</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 861">Table 861</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 862">Table 862</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 863">Table 863</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 864">Table 864</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 865">Table 865</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 866">Table 866</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 867">Table 867</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 868">Table 868</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 869">Table 869</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 870">Table 870</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 871">Table 871</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 872">Table 872</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 873">Table 873</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 874">Table 874</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 875">Table 875</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 876">Table 876</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 877">Table 877</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 878">Table 878</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 879">Table 879</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 880">Table 880</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 881">Table 881</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 882">Table 882</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 883">Table 883</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 884">Table 884</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 885">Table 885</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 886">Table 886</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 887">Table 887</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 888">Table 888</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 889">Table 889</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 890">Table 890</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 891">Table 891</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 892">Table 892</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 893">Table 893</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 894">Table 894</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 895">Table 895</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 896">Table 896</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 897">Table 897</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 898">Table 898</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 899">Table 899</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 900">Table 900</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 901">Table 901</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 902">Table 902</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 903">Table 903</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 904">Table 904</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 905">Table 905</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 906">Table 906</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 907">Table 907</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 908">Table 908</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 909">Table 909</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 910">Table 910</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 911">Table 911</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 912">Table 912</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 913">Table 913</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 914">Table 914</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 915">Table 915</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 916">Table 916</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 917">Table 917</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 918">Table 918</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 919">Table 919</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 920">Table 920</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 921">Table 921</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 922">Table 922</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 923">Table 923</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 924">Table 924</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 925">Table 925</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 926">Table 926</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 927">Table 927</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 928">Table 928</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 929">Table 929</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 930">Table 930</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 931">Table 931</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 932">Table 932</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 933">Table 933</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 934">Table 934</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 935">Table 935</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 936">Table 936</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 937">Table 937</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 938">Table 938</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 939">Table 939</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 940">Table 940</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 941">Table 941</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 942">Table 942</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 943">Table 943</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 944">Table 944</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 945">Table 945</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 946">Table 946</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 947">Table 947</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 948">Table 948</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 949">Table 949</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 950">Table 950</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 951">Table 951</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 952">Table 952</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 953">Table 953</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 954">Table 954</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 955">Table 955</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 956">Table 956</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 957">Table 957</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 958">Table 958</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 959">Table 959</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 960">Table 960</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 961">Table 961</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 962">Table 962</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 963">Table 963</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 964">Table 964</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 965">Table 965</a>) </ul><br/> <u>3D:</u><br/> Spectra: <ul><br/> <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 210">Table 210</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 211">Table 211</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 212">Table 212</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 213">Table 213</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 214">Table 214</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 215">Table 215</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 216">Table 216</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 217">Table 217</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 218">Table 218</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 282">Table 282</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 283">Table 283</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 284">Table 284</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 285">Table 285</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 286">Table 286</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 287">Table 287</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 288">Table 288</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 289">Table 289</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 290">Table 290</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 786">Table 786</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 787">Table 787</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 788">Table 788</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 789">Table 789</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 790">Table 790</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 791">Table 791</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 792">Table 792</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 793">Table 793</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 794">Table 794</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 795">Table 795</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 796">Table 796</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 797">Table 797</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 798">Table 798</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 799">Table 799</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 800">Table 800</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 801">Table 801</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 802">Table 802</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 803">Table 803</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 804">Table 804</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 805">Table 805</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 806">Table 806</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 807">Table 807</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 808">Table 808</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 809">Table 809</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 810">Table 810</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 811">Table 811</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 812">Table 812</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 813">Table 813</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 814">Table 814</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 815">Table 815</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 816">Table 816</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 817">Table 817</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 818">Table 818</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 819">Table 819</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 820">Table 820</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 821">Table 821</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 822">Table 822</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 823">Table 823</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 824">Table 824</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 825">Table 825</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 826">Table 826</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 827">Table 827</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 828">Table 828</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 829">Table 829</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 830">Table 830</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 966">Table 966</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 967">Table 967</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 968">Table 968</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 969">Table 969</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 970">Table 970</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 971">Table 971</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 972">Table 972</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 973">Table 973</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 974">Table 974</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 975">Table 975</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 976">Table 976</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 977">Table 977</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 978">Table 978</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 979">Table 979</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 980">Table 980</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 981">Table 981</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 982">Table 982</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 983">Table 983</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 984">Table 984</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 985">Table 985</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 986">Table 986</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 987">Table 987</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 988">Table 988</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 989">Table 989</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 990">Table 990</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 991">Table 991</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 992">Table 992</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 993">Table 993</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 994">Table 994</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 995">Table 995</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 996">Table 996</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 997">Table 997</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 998">Table 998</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 999">Table 999</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1000">Table 1000</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1001">Table 1001</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1002">Table 1002</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1003">Table 1003</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1004">Table 1004</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1005">Table 1005</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1006">Table 1006</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1007">Table 1007</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1008">Table 1008</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1009">Table 1009</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1010">Table 1010</a>) </ul><br/>

$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.


Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 109-122, 1998.
Inspire Record 450085 DOI 10.17182/hepdata.44384

Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy (ETJ). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETJ > 6 GeV and of the resolved photon events with ETJ > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETJ < 11 GeV lie below the data.

1 data table match query

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 8 GeV and a requirement on X(NAME=GAMMA_OBS) to be > 0.75. The second DSYS errors are the correlated uncertainties.


Dijet photoproduction at HERA and the structure of the photon.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 23 (2002) 615-631, 2002.
Inspire Record 568665 DOI 10.17182/hepdata.46761

The dijet cross section in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb$^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$ and a photon-proton centre-of-mass energy in the range $134 < W_{\gamma p} < 277$ GeV. Each event contains at least two jets satisfying transverse-energy requirements of $E_{T}^{\rm jet1}>14$ GeV and $E_{T}^{\rm jet2}>11$ GeV and pseudorapidity requirements of $-1<\eta^{\rm jet1,2}<2.4$. The measurements are compared to next-to-leading-order QCD predictions. The data show particular sensitivity to the density of partons in the photon, allowing the validity of the current parameterisations to be tested.

1 data table match query

No description provided.


Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 082301, 2018.
Inspire Record 1670168 DOI 10.17182/hepdata.83911

The elliptic azimuthal anisotropy coefficient ($v_2$) is measured for charm (D$^0$) and strange (K$_\mathrm{S}^0$, $\Lambda$, $\Xi^-$, and $\Omega^-$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV. A significant positive $v_2$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $v_2$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV, also presented.

1 data table match query

The elliptic flow per constituent quark after correcting back-to-back jet contribution, $v_{2}^{sub}/n_{q}$, for $\Xi^{-}$ as a function of transverse kinetic energy per constituent quark $KE_{T}/n_{q}$ in PbPb collision at 5.02 TeV.


Energy dependence of the charged multiplicity in deep inelastic scattering at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
JHEP 06 (2008) 061, 2008.
Inspire Record 782120 DOI 10.17182/hepdata.45319

The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic $ep$ scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb$^{-1}$. The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in $\epem$ collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions.

1 data table match query

Mean charged multiplicity measured in the Breit frame as a function of Meff with the assumptions of stable or decaying K0 and LAMBDA particles.


Event shape variables measured using multijet final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2018) 117, 2018.
Inspire Record 1701612 DOI 10.17182/hepdata.86517

The study of global event shape variables can provide sensitive tests of predictions for multijet production in proton-proton collisions. This paper presents a study of several event shape variables calculated using jet four momenta in proton-proton collisions at a centre-of-mass energy of 13 TeV and uses data recorded with the CMS detector at the LHC corresponding to an integrated luminosity of 2.2 fb$^{-1}$. After correcting for detector effects, the resulting distributions are compared with several theoretical predictions. The agreement generally improves as the energy, represented by the average transverse momentum of the two leading jets, increases.

1 data table match query

Normalized differential distributions of unfolded data for $B_{Tot}$ for $365 < H_{T,2} < 452$ GeV


Event shapes in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 767 (2007) 1-28, 2007.
Inspire Record 714503 DOI 10.17182/hepdata.11818

Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 &lt; Q^2 &lt; 20 480\gev^2$ and $0.0024 &lt; x &lt; 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.

1 data table match query

Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.


Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

1 data table match query

The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for $\Lambda/\bar{\Lambda}$.


Evidence for tWZ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV in multilepton final states

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-TOP-22-008, 2023.
Inspire Record 2738533 DOI 10.17182/hepdata.138419

The first evidence for the standard model production of a top quark in association with a W boson and a Z boson is reported. The measurement is performed in multilepton final states, where the Z boson is reconstructed via its decays to electron or muon pairs and the W boson decays either to leptons or hadrons. The analysed data were recorded by the CMS experiment at the CERN LHC in 2016-2018 in proton-proton collisions at $\sqrt{s}$ = 13 TeV, and correspond to an integrated luminosity of 138 fb$^{-1}$. The measured cross section is 354 $\pm$ 54 (stat) $\pm$ 95 (syst) fb, and corresponds to a statistical significance of 3.4 standard deviations.

11 data tables match query

Expected yields for signal and background processes and observed number of events in the signal and control regions

Postfit b jet multiplicity distribution in the $\text{SR}_\text{4l}$

Postfit score of the tWZ output node from the multiclass classifier in $\text{SR}_\text{3l,3j}$ for events with exactly 1 b jet

More…

Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.C 92 (2015) 034911, 2015.
Inspire Record 1347386 DOI 10.17182/hepdata.67151

A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pt and eta of both particles, and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at sqrt(s[NN]) = 2.76 TeV and pPb collisions at sqrt(s[NN]) = 5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pt and eta. When measured with particles of different pt, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different eta. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very high-multiplicity pPb collisions. The eta-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

1 data table match query

The $p_{T}$-dependent factorization ratio, $r_{2}$, as a function of $p^{a}_{T} - p^{b}_{T}$ for $1.5<p^{trig}_{T}<2.0$ GeV/c for centrality 30-40% in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV.


Exclusive electroproduction of Phi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 718 (2005) 3-31, 2005.
Inspire Record 679957 DOI 10.17182/hepdata.45894

Exclusive electroproduction of $\phi$ mesons has been studied in $e^\pm p$ collisions at $\sqrt{s}=318 \gev$ with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb$^{-1}$. The $\gamma^*p$ cross section is presented in the kinematic range $2<Q^2<70 \gev^2$, $35<W<145 \gev$ and ${|t|}<0.6 \gev^2$. The cross sections as functions of $Q^2$, $W$, $t$ and helicity angle $\theta_h$ are compared to cross sections for other vector mesons. The ratios $R$ of the cross sections for longitudinally and transversely polarized virtual photons are presented as functions of $Q^2$ and $W$. The data are also compared to predictions from theoretical models.

1 data table match query

The spin density matrix element R04_00 and ratios of longitudinal and transversely polarized photons as a function of W for the Q**2 region 2 to 5 GeV**2.


Exclusive electroproduction of rho0 and J / psi mesons at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 6 (1999) 603-627, 1999.
Inspire Record 475083 DOI 10.17182/hepdata.44217

Exclusive production of $\rho^0$ and $J/\psi$ mesons in e^+ p collisions has been studied with the ZEUS detector in the kinematic range $0.25 < Q^2 < 50 GeV^2, 20 < W < 167 GeV$ for the $\rho^0$ data and $2 < Q^2 < 40 GeV^2, 50 < W < 150 GeV$ for the $J/\psi$ data. Cross sections for exclusive $\rho^0$ and $J/\psi$ production have been measured as a function of $Q^2, W$ and $t$. The spin-density matrix elements $r^{04}_{00}, r^1_{1-1}$ and $Re r^{5}_{10}$ have been determined for exclusive $\rho^0$ production as well as $r^{04}_{00}$ and $r^{04}_{1-1}$ for exclusive $J/\psi$ production. The results are discussed in the context of theoretical models invoking soft and hard phenomena.

1 data table match query

The spin-density martix elements deletermined for various values of W and Q**2 for the RHO0 BPC sample.