A COMBINED ANALYSIS OF SLAC EXPERIMENTS ON DEEP INELASTIC e p AND e d SCATTERING

Whitlow, L.W. ; Bodek, A. ; Rock, Stephen ; et al.
Nucl.Phys.B Proc.Suppl. 16 (1990) 215-216, 1990.
Inspire Record 280954 DOI 10.17182/hepdata.2721

None

1 data table match query

No description provided.


Precise measurement of neutrino and anti-neutrino differential cross sections.

The NuTeV collaboration Tzanov, M. ; Naples, D. ; Boyd, S. ; et al.
Phys.Rev.D 74 (2006) 012008, 2006.
Inspire Record 691719 DOI 10.17182/hepdata.11120

The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

1 data table match query

Measurement of XF3 at X = 0.550.


Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Rev.D 87 (2013) 074029, 2013.
Inspire Record 1208547 DOI 10.17182/hepdata.62097

Multiplicities in semi-inclusive deep-inelastic scattering are presented for each charge state of \pi^\pm and K^\pm mesons. The data were collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams incident on a hydrogen or deuterium gas target. The results are presented as a function of the kinematic quantities x_B, Q^2, z, and P_h\perp. They represent a unique data set for identified hadrons that will significantly enhance our understanding of the fragmentation of quarks into final-state hadrons in deep-inelastic scattering.

1 data table match query

pi- multiplicities from HERMES, Target: H, Target: D, VM subtracted, Z in the range 0.3-0.4.


A High Statistics Measurement of the Proton Structure Functions F(2) (x, Q**2) and R from Deep Inelastic Muon Scattering at High Q**2

The BCDMS collaboration Benvenuti, A.C. ; Bollini, D. ; Bruni, G. ; et al.
Phys.Lett.B 223 (1989) 485-489, 1989.
Inspire Record 276661 DOI 10.17182/hepdata.12557

We present results on a high statistics study of the proton structure functions F 2 ( x , Q 2 ) and R = σ L / σ T measured in deep inelastic scattering of muons on a hydrogen target. The analysis is based on 1.8 × 10 6 events after all cuts, recorded at beam energies of 100, 120, 200 and 280 GeV and covering a kinematic range 0.06 ⩽ x ⩽ 0.80 and 7 GeV 2 ⩽ Q 2 ⩽260 GeV 2 . At small x , we find R to be different from zero in agreement with predictions of perturbative QCD.

1 data table match query

R=SIG(L)/SIG(T) IS TAKEN TO BE R(QCD).


Hadronization in semi-inclusive deep-inelastic scattering on nuclei

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Nucl.Phys.B 780 (2007) 1-27, 2007.
Inspire Record 749249 DOI 10.17182/hepdata.13387

A series of semi-inclusive deep-inelastic scattering measurements on deuterium, helium, neon, krypton, and xenon targets has been performed in order to study hadronization. The data were collected with the HERMES detector at the DESY laboratory using a 27.6 GeV positron or electron beam. Hadron multiplicities on nucleus A relative to those on the deuteron, R_A^h, are presented for various hadrons (\pi^+, \pi^-, \pi^0, K^+, K^-, p, and \bar{p}) as a function of the virtual-photon energy \nu, the fraction z of this energy transferred to the hadron, the photon virtuality Q^2, and the hadron transverse momentum squared p_t^2. The data reveal a systematic decrease of R_A^h with the mass number A for each hadron type h. Furthermore, R_A^h increases (decreases) with increasing values of \nu (z), increases slightly with increasing Q^2, and is almost independent of p_t^2, except at large values of p_t^2. For pions two-dimensional distributions also are presented. These indicate that the dependences of R_A^{\pi} on \nu and z can largely be described as a dependence on a single variable L_c, which is a combination of \nu and z. The dependence on L_c suggests in which kinematic conditions partonic and hadronic mechanisms may be dominant. The behaviour of R_A^{\pi} at large p_t^2 constitutes tentative evidence for a partonic energy-loss mechanism. The A-dependence of R_A^h is investigated as a function of \nu, z, and of L_c. It approximately follows an A^{\alpha} form with \alpha \approx 0.5 - 0.6.

1 data table match query

PI+ multiplicty ratio (Krypton/Deuterium) as a function of Z.


Precise determination of the spin structure function g(1) of the proton, deuteron and neutron.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Rev.D 75 (2007) 012007, 2007.
Inspire Record 726689 DOI 10.17182/hepdata.11211

Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

1 data table match query

Correlation matrix for G1 for the P target in 15 X bins (Q**2 > 1 GeV**2), averaged over Q**2.


Diffractive deep-inelastic scattering with a leading proton at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 749-766, 2006.
Inspire Record 718189 DOI 10.17182/hepdata.45891

The cross section for the diffractive deep-inelastic scattering process $ep \to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \xpom <0.1 in fractional proton longitudinal momentum loss, 0.08 < |t| < 0.5 GeV^{-2} in squared four-momentum transfer at the proton vertex, 2 < Q^2 < 50 GeV^2 in photon virtuality and 0.004 < \beta = x / \xpom < 1, where x is the Bjorken scaling variable. For $\xpom \lapprox 10^{-2}$, the differential cross section has a dependence of approximately ${\rm d} \sigma / {\rm d} t \propto e^{6 t}$, independently of \xpom, \beta and Q^2 within uncertainties. The cross section is also measured triple differentially in \xpom, \beta and Q^2. The \xpom dependence is interpreted in terms of an effective pomeron trajectory with intercept $\alpha_{\pom}(0)=1.114 \pm 0.018 ({\rm stat.}) \pm 0.012 ({\rm syst.}) ^{+0.040}_{-0.020} ({\rm model})$ and a sub-leading exchange. The data are in good agreement with an H1 measurement for which the event selection is based on a large gap in the rapidity distribution of the final state hadrons, after accounting for proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q^2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.

1 data table match query

No description provided.


A Measurement and QCD Analysis of the Proton Structure Function $F_2(x,Q~2)$ at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 470 (1996) 3-40, 1996.
Inspire Record 416819 DOI 10.17182/hepdata.44781

A new measurement of the proton structure function $F_2(x,Q~2)$ is reported for momentum transfers squared $Q~2$ between 1.5GeV$~2$ and 5000GeV$~2$ and for Bjorken $x$ between $3\cdot 10~{-5}$ and $0.32$ using data collected by the HERA experiment H1 in 1994. The data represent an increase in statistics by a factor of ten with respect to the analysis of the 1993 data. Substantial extension of the kinematic range towards low $Q~2$ and $x$ has been achieved using dedicated data samples and events with initial state photon radiation. The structure function is found to increase significantly with decreasing $x$, even in the lowest accessible $Q~2$ region. The data are well described by a Next to Leading Order QCD fit and the gluon density is extracted.

1 data table match query

Data from normal vertex sample.


Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Nucl.Phys.A 845 (2010) 1-32, 2010.
Inspire Record 846170 DOI 10.17182/hepdata.55369

We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.

1 data table match query

F2 measurements for a Q**2 of 1.450 GeV**2.


Measurement of charged particle transverse momentum spectra in deep inelastic scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 485 (1997) 3-24, 1997.
Inspire Record 424463 DOI 10.17182/hepdata.44710

Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.

1 data table match query

Charged particle PTMAX distribution in the pseudorapidity interval 0.5 to 1.5.