Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables match query

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

14 data tables match query

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…

A Precise Measurement of the $Z$ Resonance Parameters Through Its Hadronic Decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 241 (1990) 435-448, 1990.
Inspire Record 295501 DOI 10.17182/hepdata.29722

A measurement of the cross section for e + e - → hadrons using 11 000 hadronic decays of the Z boson at ten different center-of-mass energies is presented. A three-parameter fit gives the following values for the Z mass M z , the total width Γ z , the product of the electronic and hadronic partial widths Γ e Γ h , and the unfolded pole cross section σ 0 : M Z =91.171±0.030(stat)±0.030 (beam) GeV, Γ Z =2.511±0.065 GeV, Γ e Γ h =0.148±0.006 (stat.)±0.004 (syst.) GeV 2 , σ 0 =41.6±0.7(stat.)±1.1 (syst.) nb,

1 data table match query

No description provided.


Determination of alpha-s from the scaling violation in the fragmentation functions in e+ e- annihilation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 311 (1993) 408-424, 1993.
Inspire Record 355937 DOI 10.17182/hepdata.48411

A determination of the hadronic fragmentation functions of the Z 0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 ⩽ Q 2 ⩽ 8312 GeV 2 and x (= P h E beam ) > 0.08 . A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: α s ( M Z ) = 0.118 ± 0.005. The corresponding QCD scale for five quark flavours is: Λ (5) MS = 230 ± 60 MeV .

2 data tables match query

No description provided.

Extraction of strong coupling constant ALP_S and the LAMQCD)MSBAR values.


Measurement of the Mass and Width of the Z0 Particle from Multi - Hadronic Final States Produced in e+ e- Annihilations

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 231 (1989) 539-547, 1989.
Inspire Record 282905 DOI 10.17182/hepdata.29769

First measurements of the mass and width of the Z 0 performed at the newly commissioned LEP Collider by the DELPHI Collaboration are presented. The measuements are derived from the study of multihadronic final states produced in e + e − annihilations at several energies around the Z 0 mass. The values found for the mass and width are M (Z 0 )=91.06±0.09 (stat) ±0.045 (syst.) GeV and Γ (Z 0 )=2.42±0.21 (stat.) GeV respectively, froma three-parameter fit to the line shape. A two-parameter fit in the framework of the standard model yields for the number of light neutrino species N ν =2.4±0.4 (stat.) ±0.5 (syst.).

1 data table match query

No description provided.


Production of Lambda and Lambda anti-Lambda correlations in the hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 318 (1993) 249-262, 1993.
Inspire Record 360638 DOI 10.17182/hepdata.48369

An analysis of the production of the Λ baryon in the hadronic decays of the Z 0 is presented, based on about 993K multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. The differencial cross section of the Λ and the correlations between Λ and Λ produced in the same event are compared to current models, based both on string fragmentation and on cluster decay. The predictions of the string fragmentation model are found to give satisfactory agreements with the data, clearly better than those of the cluster model.

6 data tables match query

No description provided.

Combined LAMBDA and LAMBDABAR multiplicity.

Errors contain systematic uncertainties.

More…

Determination of alpha-s using the next-to-leading log approximation of QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 21-34, 1993.
Inspire Record 354909 DOI 10.17182/hepdata.50115

A new measurement of αs is obtained from the distributions in thrust, heavy jet mass, energy-energy correlation and two recently introduced jet broadening variables following a method proposed by Cata

7 data tables match query

Thrust distribution corrected for detector acceptance and initial state photon radiation.

Heavy jet mass (RHO) distribution (THRUST definition) corrected for detect or acceptance and initial state photon radiation.

Heavy jet mass (RHOM) distribution (MASS definition) corrected for detectoracceptance and initial state photon radiation.

More…

A Measurement of D meson production in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 533-546, 1993.
Inspire Record 356732 DOI 10.17182/hepdata.14375

A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.

6 data tables match query

Using full data sample.

Using full data sample with proper time > 1 ps to enrich (b bbar) content.

Data with Delta(L) > 1.

More…

Charged particle multiplicity distributions in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 50 (1991) 185-194, 1991.
Inspire Record 301657 DOI 10.17182/hepdata.15028

This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is <nch>=20.71±0.04(stat)±0.77(syst) and the dispersionD=6.28±0.03(stat)±0.43(syst). The data are compared with the results at lower energies and with the predictions of phenomenological models. The Lund parton shower model describes the data reasonably well. The multiplicity distributions show approximate KNO-scaling. They also show positive forward-backward correlations that are strongest in the central region of rapidity and for particles of opposite charge.

5 data tables match query

Charged particle multiplicity distribution for the raw data in full phase space.

Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.

Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.

More…

Charged multiplicity and rapidity distributions in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-117, 1990.
Inspire Record 299521 DOI 10.17182/hepdata.48523

None

1 data table match query

No description provided.