Measurements of Interaction Cross-Sections and Nuclear Radii in the Light p Shell Region

Tanihata, I. ; Hamagaki, H. ; Hashimoto, O. ; et al.
Phys.Rev.Lett. 55 (1985) 2676-2679, 1985.
Inspire Record 227714 DOI 10.17182/hepdata.20283

Interaction cross sections (σI) for all known Li isotopes (Li6-Li11) and Be7, Be9, and Be10 on targets Be, C, and Al have been measured at 790 MeV/nucleon. Root mean square radii of these isotopes as well as He isotopes have been deduced from the σI by a Glauber-type calculation. Appreciable differences of radii among isobars (He6-Li6, He8-Li8, and Li9-Be9) have been observed for the first time. The nucleus Li11 showed a remarkably large radius suggesting a large deformation or a long tail in the matter distribution.

1 data table match query

No description provided.


Spin-isospin flip giant resonances and shell dependence in Li-7 and Be-9 by pi+ photoproduction.

Shoda, K. ; Toyama, S. ; Takeshita, K. ; et al.
Phys.Rev.C 59 (1999) 3196-3207, 1999.
Inspire Record 504820 DOI 10.17182/hepdata.25696

The giant resonances of spin-isospin flip mode are studied by measuring the energy and angular distributions of π+ electroproduced from 7Li and 9Be nuclei. Several strong π+ groups are found and angular distributions of these groups are analyzed by distorted-wave impulse approximation calculations using the single particle shell model. The experimental cross section of the groups corresponds to an order of the charge exchange single particle transition strength, establishing them as spin-isospin flip giant resonances. The shell model nature of (γ,π+) results for 1p3/2 shell nuclei are summarized and presented together with previously published data. The obtained results are compared to previously published data for (π−,γ), (n,p), (e,e′p), and (p,2p) reactions. Strong transitions consistent with the giant resonance excitations from the 1s1/2 shell in the core and from the 1p3/2 valence shell are observed.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Projectile rapidity pions in 775-MeV/nucleon La-139 + C-12 and La-139 + La-139 reactions

Hashimoto, O. ; Hamagaki, H. ; Kobayashi, T. ; et al.
Phys.Rev.C 49 (1994) 420-427, 1994.
Inspire Record 383725 DOI 10.17182/hepdata.25980

Negative pion spectra emitted in the reactions of 775 MeV/nucleon La139+12C and La139+139La reactions have been measured in coincidence with the projectile fragments using the HISS spectrometer at the Bevalac. Prominent peaks near the beam velocity were observed in the pion spectra. Position and widths of the peaks were studied as a function of the ‘‘sum charge’’ of projectile fragments which is a good measure of impact parameter; the smaller the ‘‘sum charge,’’ the smaller the impact parameter. The peak position down shifts with the smaller ‘‘sum charge.’’ The pion peak is wider in the transverse than in the longitudinal direction, possibly mirroring the velocity dispersions of projectile fragments in the early stage of reactions.

2 data tables match query

THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.

THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.


CHARGE NUMBER DEPENDENCE OF PI+ PRODUCTION FROM NUCLEI BY 200-MEV ELECTRON

Shoda, K. ; Toyama, S. ; Torikoshi, M. ; et al.
Nucl.Phys.A 486 (1988) 512-525, 1988.
Inspire Record 270173 DOI 10.17182/hepdata.37011

Photopion energy distributions have been measured on 7 Li , 28 Si , 51 V and 93 Nb at θ π = 90° with 200 MeV electron. The logarithmic plot of the distributions shows a break at around 10 MeV of the residual energy. This is not explained by the quasi-free π + production. The (e, π + ) cross sections at θ π = 90° deduced by integrating the energy distribution. The result can be approximated by σ 0 Z 2 3 , where σ 0 is 0.13 times the elementary cross section of H(e, π + ) at θ π = 90°. The quasi-free π + production calculated by the Fermi-gas model with Pauli exclusion principle approximately reproduces the relative dependence on the charge number but its absolute value is about ten times as large as the experimental result. The present result for the charged photopion cross section in the threshold region is in contrast to the case in the Δ-resonance region where the cross section of π + + π − photoproduction is expressed by A 2 3 times the elementary cross sections.

1 data table match query

No description provided.


Measurements of Interaction Cross-Sections and Radii of He Isotopes

Tanihata, I. ; Hamagaki, H. ; Hashimoto, O. ; et al.
Phys.Lett.B 160 (1985) 380-384, 1985.
Inspire Record 212823 DOI 10.17182/hepdata.30351

Secondary beams of 3 He, 4 He, 6 He, and 8 He were produced through the projectile fragmentation of an 800 MeV/nucleon 11 B primary beam. Interaction cross sections ( σ I ) of all He isotopes of 790 MeV/nucleon on Be, C, and Al targets were measured by a transmission-type experiment. The interaction nuclear radii of He isotopes R I ( He ) = ( σ I π ) 1 2 − R I ( T ) where R I ( T ) is the radius of the target nucleus, have been deduced to be R I ( 3 He ) = 1.59 ± 0.06 fm , R I ( 4 He ) = 1.40 ± 0.05 fm , R I ( 6 He ) = 2.21 ± 0.06 fm , and R I ( 8 He ) = 2.52 ± 0.06 fm .

1 data table match query

No description provided.


Version 2
A measurement of soft-drop jet observables in $pp$ collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052007, 2020.
Inspire Record 1772062 DOI 10.17182/hepdata.92073

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.

504 data tables match query

Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

More…

Version 2
Measurements of the W production cross sections in association with jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 82, 2015.
Inspire Record 1319490 DOI 10.17182/hepdata.66683

This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.

102 data tables match query

Distribution of inclusive jet multiplicity.

Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.

Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.

More…

Measurement of event-shape observables in $Z \to \ell^{+} \ell^{-}$ events in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 375, 2016.
Inspire Record 1424838 DOI 10.17182/hepdata.74004

Event-shape observables measured using charged particles in inclusive $Z$-boson events are presented, using the electron and muon decay modes of the $Z$ bosons. The measurements are based on an integrated luminosity of $1.1 {\rm fb}^{-1}$ of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy $\sqrt{s}=7$ TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the $Z$-boson decay, are measured in different ranges of transverse momentum of the $Z$ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and $\mathcal{F}$-parameter, which are in particular sensitive to properties of the underlying event at small values of the $Z$-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high $Z$-boson transverse momenta than at low $Z$-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.

60 data tables match query

No description provided.

No description provided.

No description provided.

More…

Version 2
Measurement of differential cross sections and $W^+/W^-$ cross-section ratios for $W$ boson production in association with jets at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 077, 2018.
Inspire Record 1635273 DOI 10.17182/hepdata.80076

This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.

86 data tables match query

Cross section for the production of W bosons for different inclusive jet multiplicities.

Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.

Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.

More…

Version 2
A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 092001, 2018.
Inspire Record 1637587 DOI 10.17182/hepdata.79953

Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log$_{10}\rho^2$, where $\rho$ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

24 data tables match query

Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 3b. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

More…